

Block 19 continued.

Abstract

This study evaluates the threat to aircraft and aircrew members from the dust and radioactivity in a cloud generated by nuclear surface bursts.

A model of the nuclear cloud is generated, using any number and type of weapons and any desired dust size distribution. The cloud is propagated through the atmosphere for a given time, then penetrated by an aircraft. The activity density in the cloud is converted to dose to the crew for a given path through the cloud. Radiation shielding and dust filters are included in the calculations. Alternatively, the cloud dust mass density can be converted to mass trapped in a filter or the cabin: or to the dust mass that has entered the engine.

Methods for determining particle size and altitude distributions are presented. The ionizing dose to the crewmember is computed for both sky-shine and the dust trapped in the cabin during cloud passage. A method of computing the shielding power of the crew compartment against sky-shine is presented. Given the air flow rate into a filter or engine, the mass of ingested dust is found.

The nuclear cloud and aircraft models developed by this study are incorporated in a computer code oriented toward operational use. A significant feature of the code includes the ability to easily change the scenario with menu driven options.

CEANGE 1

to

ATKCREW DOGE AND ENGENE DUST INGESTTON FROM NUCTEAR CIOUD PENETRATION

by capt. Stephen P. Conners

Thesis date: Narch 85 DTIC number: ADA 159246
Change 1 date: I. May 86 ******************************* 1.1, 29 May 86
NOME: Many of the colons in the text should be semjcclons; the problem Was that the greek printwheel used to print the thesis did not have a semicolon available. Other slight irregularities are due to this problem.

Acd "ch l" noxt to all changes
Title page: below name block, add: CHANGE] .- IMAY 86
page i: below "March 1985". add: CHANGE 1. 1 MAY 86
page iv:
change "Sample Activity Output" to "Sample Sirgle Burst Activity Output"
change "Sample Multi Burst Output" to "Sample Multi Burst
Activity Output"
T-re 9:
paragraph I, line 3: change "in" to "by"
in Eq 1 , in the first term after "where", add after ln(rm): "Irm is the mean radius of a distributiony"
in Eq 1 , in the second term after "whore", add after ln(or): "[σ_{rm} is the standard deviation of the mean radius of a diblibution]"
page 10: Add the following note at the bottom of the page. "NOTE: Nomenclature used here for lognornal functions follows that used by DELFIC. A statistician would be more comforcable with the folloning equivalent terms:
particle size distribution: radius distribution volume distribution:
surface area distribution:
volume dictribution with respect to radius surface area distribution with respect to radius
page 12: in Figure 1 , the line for DELPTC vas not plotted properly: DELPIC is the sum or two cumative log normals, and is therefore not a strajght line on this graph. The maximum deviation of the proper line is no more than $1 / 8^{\prime \prime}$ left of the existing line at midpoint. The proper line can be found by plotting data from rable IJ on Figure 1.
\& 17: Equation 3 is incorrect; the equation given is actually the horizontal stabilization time, Ths which is alco found on
page 85. The correct expressions for Equation 3 follow:
"For 1 to 10 RTs

$$
\begin{equation*}
T_{V S}=347.0 \quad[s] \tag{3.1}
\end{equation*}
$$

For 10 to $15,000 \mathrm{KT}:$

$$
\begin{aligned}
T_{v s}=368.384-37.0093(\operatorname{lnY}) & +21.7003(\operatorname{lnY})^{2} \\
& -4.8593(\ln Y)^{3}+0.288399(\ln Y)^{4}[s](3.2)
\end{aligned}
$$

For 15.000 to $50,000 \mathrm{KT}$:

$$
\begin{equation*}
T_{V S}=164.0[\mathrm{~s}] \tag{3.3}
\end{equation*}
$$

page 28: paragraph 3, line 4: change "less" to "more"
page
39:
paragraph 1, line 5: change "three" to "two"
paragraph l, line 7: change ascumption 1. to read:
"1. The nctivity density of the cloud does not vary
vertically or laterally within five gama mean free path lengths."
pacagraph 1, line 9: delote acoumption 2.
paragraph 1. line 11: change assumption "3." to "2."
paragraph 2, line 2: change "two assumptions" to "assumption"
paragraph 2, line 3: change "establish" to "establishes"
page 44: paragraph 2, line 7: add the following sentance:
"(An analytical solution is also availabie in Appendix k.)"
page 45:
Table VIIf: after "Cabin Radius M" add a column as follows: Analytical Cabin
Geometry Factor

-1
$B-1 \mathrm{~B}$

B․ 2 2. 20
B-52n 2.20
E-3 2.69
$E-4 B \quad 4.86$
EC-135 2.65
KCW 135 2.65
page 51: see beloy
page 67: see below
page 70: add:
NOTE
Tables X through $X X$ and Tables XXII through XXIV were created using the horizontal cloud stabilization time rather than the vertical cloud stabilization time. The text of the thesis correctly uses the resulta of the vertical cloud stabilization time for comparisons. No major differences in output between the two cases (vertical or horizontal stabilization time)
will be noted for the fime $=1$ hr cases used in the text of the thesis. At very early times computed by the user, there would be differences. This problem is fixed by changing Eguation 3 (above. page 17) and changing Appendix A2. and Appendix E (below, pages 84, 104).
page 73: paragraph 14, line 2: change "Offut" to "offutt"
page 84: in the first table, change the line that reads
"1,000
1,000
5651
845.2" to
1,000
5651 202.7"
change the equation for Vertical stabilization mine (seconds) to:
"For I to 10 KT :

$$
\mathrm{T}_{\mathrm{VS}}=34, .0 \quad[\mathrm{~s}]
$$

For 10 to $15,000 \mathrm{KT}$:

$$
\begin{aligned}
& T_{V B}=368.384-37.0093(\operatorname{lnY})+21.7003(1 \mathrm{nY})^{2} \\
& -4.8593(\ln Y)^{3}+.288199(\ln Y)^{4}[s]
\end{aligned}
$$

For 15,000 to $50,000 \mathrm{kT}:$

$$
T_{\mathrm{VG}}=164.0[\mathrm{~s}]
$$

page 85: line 2: change "vertical" to "horizontal"
page 88: line 13: change "largest particle" to "largest size particle"
page 90:
line 7: change definition to read "componont of wind along track ${ }^{\text {a }}$
line 8: change definition to read "component of wind across track ${ }^{\circ}$

Jine 14: change "distance" to "vertical distance"
page 91: paragraph 2. line 3: change "a disk file" to "disk files"
page 98: line 7235 must be deleted or commented out if the
filter described in lines 7210, 7220, and 7230 is to be used.
Line 7235 overwrites the variable filter.t. factor (G) with the factor 1 (none are trapped) when it is desixed to run the case without a filter.
page 100:
add line 1045: "1045 'change 1, 1 May 86 by Capt. Conners"
replace line 1070 with the following line:

add line 1165: "1165 ELSE CONTTNUE : '(WHTCHz = 1)
add at the end of line 1220: " : number of bombs"
add at the end of line 1230: " - see text for justification"
page 101:
line 1370: change ": HR" to ": 'HR since burst"
line 1430: add ": M" to the end of the line
line 1450; add ": 'M" to the end of the line
page 104:
add line 2245:
$" 2245$ 'Units - $3.7 \mathrm{E}+10$ Curies/sec - $1.6 \mathrm{E}-11 \mathrm{~J} / \mathrm{MEV}-3600 \mathrm{sec} / \mathrm{hr}{ }^{\mathrm{n}}$
replace line 2260 with the following lines:
"2260 IF KR >= 1 OR KT $<=10$ THEN STAB。TIME $=347.0 / 3600$
2261 IF KT > 10 OR KT < 15000 THEN
STAB.TIME $=\left(368.384-37.0093 * \%+21.7003 * \mathrm{~K}^{\wedge} 2-4.8593 * \mathrm{X}^{\wedge} 3+.288199 * \mathrm{~K}^{\wedge} 4\right) / 3600$
2262 IF KT $>=15000$ OR $\mathrm{KT}<50000 \mathrm{TEEN}$ STAB.TIME $=164.0 / 3600$
:'HRS time for vertical cloud stabilization - CHANGE 1 - 1 MAY 86"
page 106: add to end of line 2710: ": 'DELFIC prediction, Nevada soil"
page 113: add to end of line 4650: ":'unit timo dose, no shielding"
page 115: add line 5345:
"5145 PRINCH1, "DUST/DOSE ver 8.1, 1 May 86 by Capt. Stephen P. Conners"
page 117: line 5650: change the third comma (.) to a semicolon (i)
page 119: line 6040: change the thind conma (.) to a semicolon (;)
page 120:
line 6340: change "ELSE WORST. STEP" to "ELSE WORST.ALT"
line 6470: add to end of line: ":'penetration time"
page 121:
change line 6510 from
": IF DELTAT<. 1 OR DELTAT>100 THEN DELTAT = INTERVAL/8"
to
":IF DELTAT < . 1 THEN DELTAT = INRERVAL :'to reduce compute time :IF DELTAT > 100 THEN DELTAT $=$ IMPERVAL/8"
add to end of line 6530
":'for each group (disc)..."
add to end of line 6540
":'for each deltat"
add to end of line 6550
": 'let cloud fall"
add to end of line 6570
": 'get rid of grounded groups"
add to end of inne 6610
": 'advance time to next penetration/stop time"
add to end of line 6620
": find activity and dose or mass, etc.
page 154: add to beginning of line 1: "Ri."
page 155: add below the lact line:
"Note that a Cabin Geometry Factor k can be computed for a point other than the midde of the cylinder. Determine the distence from the desired point to each end of the cyinder: call these two distances Dl and D2. The program is then run twice using using Dl and D2 for the psoudolength producing results Kl ard K2. The aggregate K factor is then (K . +K 2)/2. Further note that the less central the point is, the less reliable the assumption of uniform distribution of mass around the cabin.

```
E2. Analytical Solution for Gabin Goometry Factor K
```

2 Lt. Peter Vanden Bosch of the USAF School of Aerospace Medicine has developed an analytic solution for the cylindrical cabin integral contained in Eq 40. The solution to this equation is the tern K in Eg 41.

$$
\begin{aligned}
& K=\frac{3}{2} \quad \ln \left(n^{2}+R^{2}\right)+R \tan ^{-1}(B / R)-N \ln (H) \\
& +\frac{1}{2}: u n\left(n^{2}+R^{2}\right) \cdot 5+u R^{2} \ln \left(n+\left(n^{2}+R^{2}\right) \cdot 5, \cdots n^{2} \cdots u R^{2} \ln (R)\right. \text { : } \\
& +\frac{1}{4} u^{2} R^{2} H
\end{aligned}
$$

for a cylinder of radius R and length H.
Non-central cylinder locations can be determined by the same method noted above.
page 156:
paragraph 1, Jinc 13: change " 1984 " to "1983"
paragraph 1, line 13: charge "1984" to "1983"
add: "Current address is: Capt. Stephen E. Conners
Chief physicist
544 STW/DIA Offutt AFB。 NE 68113-5000

Curcent telephone is: 402-294-4666, AUTOVON 271-4666"
NOTE: A clarification of the logrormal distribution arguments in DELFIC and a derivation of the analytical solution of the cylinderical cabin integral are avajlable at the above address.

Post this change at the back of the thesis.

AIRCREW DOSE AND ENGINE DUST INGESTION FROM NUCLEAR CLOUD PENETRATION

THES IS

- AFIT/GNE/PE/85M-4 $\begin{aligned} & \text { Stephen P. Conners } \\ & \text { Capt }\end{aligned}$

Approved for Public Release: Distribution Onimited

AIRCREW DOSE AND ENGINE DUST INGESTION From nuclear clodd penetration

THESIS

```
Presented to the Faculty of the School of Engineering
    of the Air Force Institute of Technology
                    Air University
in Partial Fulfillment of the
Requirements for the Degree of
                Master of Science
```

 by
 Stephen P. Conners, B.S.
 Capt
 USAF
 Graduate Nuciear Engineering
 March 1985
 Approved for Pubiic Release: Distribution Unimited

Preface

This independent study began as an effort to perform a more detailed, more realistic, analysis of the factors contributing to aircrew radiation dose from a descending nuclear clond. Military planners are interested in this problem both for strategic and command and control aircraft. Recent exposure of aircraft to volcanic dust clouds has also generated interestin predicting the dust mass characteristics of nuclear clouds. The dust as well as the radiation in a nuclear cloud will contribute to equipment degradation. Accordingly, this study was extended to include calculations of dust ingestion by the aircraft as well as dose to the aircrew.

This study is based on the AFIT Fallont Smear Code as modified by Hickman (Ref 10) and K1ing (Ref 16) to allow airborne dose rather than ground dose to be determined.

The nuclear cloud model developed by this stady allows various activity size distributions to be used. The distributions are affected by fractionation and target and weapon characteristics. The distributions are converted to 100 discrete equal activity groups, and each group's initial vertical and lateral locations in the nuclear cloud are determined by fits to an initial cloud computed by the DELFIC fallout code. Each group is then tracked as it falls using McDonald-Davies fall mechanics and as it expands laterally using a model suggested by the WSEG-10 fallout code.

I would like to acknowledge my gratitude to Dr. Charles J. Bridgman for help during this research. \quad am also indebted to my wife, Ceecy, for the patience and love given during this work.
Preface ii
List of Figures v
List of Tables vi
Abstract viii
I. Introduction 1
Background
Problem
Scope
Assumptions
Approach
II. C1oud Mode1 6
Background
Particle Size DistributionsInitial Stabilized CloudCloud Activity DistributionLate Time CloudMultiple Bursts
III. Dose Analysis 35
Background
Cabin Geometry
Sky-shine Shielding
Sky-shine Dose Rate
Cabin Dust Dose Rate
Filters
Dose Results
IV. Mass Analysis 62
Background
TheoryFifter And Engine IngestionMass Results
V. Conclusions and Recommendations 70
Conclusions
Recommendations
Bibliography 73
Appendix A: Delfic Data 76
Appendix B: Glossary of Program Terms 86
Appendix C: Particie Size Program 91
Appendix D: Aircraft Data and Program 96
Appendix E: Menu Program 99
Appendix F: Main Program 111
Appendix G: Sample Activity Outpat 122
Appendix H: Sample Single Burst Mass Output 130
Appendix I: Sample Multi Burst Output 138
Appendix J: Sample Malti Burst Dust Output 146
Appendix K: Cylindrical Integration for Cabin Geometry 154
Vita 156

List_of_Figntes

Figure1 Plot of Cumulative Activity Size Distributions12
2 Plot of Cumalative Mass Size Distributions 13
3 Initial Cloud 22
4 Late Time Cloud 22
5 Smeared C1oud 26 A
6 DELFIC C1oud Activity 30
7 NRDL-N61 C1oud Activity 31
8 TOR-C Cloud Activity 32
9 TOR-C Cloud Activity Linear Plot 33
10 DELFIC C1oud Mass 63 A
11 NRDL-N61 Cloud Mass 63 B
12 TOR-C C1oud Mass 63 C

List_of_Tab1es

Table
Page

I	Particle Number Size Distributions
II	DELFIC Equal Activity Groups
III	Delfic Equal Mass Groups
IV	NRDL-N61 Equal Activity Groups
V	NRDL-N61 Equal Mass Groups
VI	TOR-C Equal Activity Groups
VII	TOR-C Equal Mass Groups
VIII	Aircraft Data
IX	Baseline Case Input Parameters
X	Baseline Case- KC-135 in DELFIC Activity Cloud
XI	KC-135 in NRDL-N61 Activity Cloud
XII	KC-135 in T OR-C Activity C1oud
XIII	B-1B Without Filter in DELFIC Activity Cioud
XIV	B-1B With Filter in DELFIC Activity Cloud
XV	KC-135 in DELFIC Activity Cioud using 0.7 MeVr
XVI	KC-135 in DELFIC Activity Cloud, Sx=10, Sy=1.
xVII	KC-135 in delfic Activity Cloud, $\mathrm{Sa}_{\mathrm{x}}=1, \mathrm{~S}_{\mathrm{y}}=10$

XVIII B-52G in DELFIC C1oud 59
XIX E-4B in DELFIC Activity Cloud 60
XX EC-135 in DELFIC Activity Cloud 61
XXI Engine Data 65
XXII KC-135 in DELFIC Dust Cloud 67
XXIII KC-135 in NRDL-N61 Dust C1oud 68
XXIV KC-135 in TOR-C Dust C1oud 69

Abstract

This study evalaates the threat to aircraft and aircrew menbers from the dust and radioactivity in a cloud generated by nuclear surface bursts.

A model of the nuclear cloud is generated, using any namber and type of weapons and any desired dust size distribution. The cloud is propagated through the atmosphere for a given time, then penetrated by an aircraft. The activity density in the ciond is converted to dose to the crew for a given path throngh the cloud. Radiation shielding and dust filters are inciuded in the calculations. Alternatively, the cloud dust mass density can be converted to mass trapped in a filter or the cabin: or to the dust mass that has entered the engine.

Methods for determining particle size and altitude distributions are presented. The ionizing dose to the crewmer is computed for both sky-shine and the dust trapped in the cabin during cloud passage. A method of computing the shielding power of the crew compartment against sky-shine is presented. Given the air flow rate into a filter or engine, the mass of ingested dust is found.

The nuclear cloud and aircraftmodels developed by this study are incorporated in a computer code oriented toward operational use. A significant feature of the code includes the ability to easily change the scenario with menu driven options.

I. Introduction

Background

Defense planners have expressed growing concern over the radiation exposure to strategic and Airborne Command Post aircraft in the event of massive nuclear strike on the dited States. Such aircraft may be required to penetrate nuclear clouds in the course of their wartime missions. A realistic estimate of the radiation dose to the aircrew penetrating the cloud is needed. In addition, recent experience with aircraft losing power while flying through volcanic ash clouds (Ref 13) has generated interest in determining the effects of dust ingestion on aircraft engines. Currently, experimenters are attempting to determine the tolerance of engines to dust ingestion (Ref 14). A realistic estimate of dust densities in a nuciear cloud is needed also to relate engine dust tolerance to the surivability of the aircraft.

Aircraft penetration of radioactive dust clouds is hazardous in at least forr ways. First, the aircrew is exposed to ionizing radiation from the cloud through the aircraft's skin and by dust trapped in the cabin. Second, the aircrew may ingest or come in contact with the radioactive particles. Third, electronic equipment could malfunction if the ionizing dose rate is high enough. Fourth, if the dust density is high enough the aircraft's engines could fail or be degraded by ingestion of the dust particles. This study focuses on the first and last hazards. The second hazard can be nearly eliminated if the crew wears normal
equipment to prevent exposure of bare skin and uses oxygen masks to preclude inhalation of particles. An estimate of the dose to electronic equipment can be made by converting tissue dose to rad(Si).

Problem

No useable data on previous fights through radioactive clouds could be found (Ref 28, 29). The problem addressedin this study is to determine the doses to aircrews for different size distributions of nuclear cloud dust particles and for different aircraft. For comparison purposes, the baseline case will be a one megaton burst, fission fraction of 0.5, DELFIC (Defense Land Fallout Information Code) default particle size distribution, a
 after cloud penetration, and a $K C-135$ aircraft.

The computer program developed for this study finds 100 equal activity-size groups for a given particle size distribution. The distribution is a function of the mean radins (rm) and standard deviation of the mean radins ($\sigma_{r m}$). From the yield, the initial altitude distribution of the particles is determined: then the cloud is allowed to fall for a specified time. This allows the activity density at any altitude to be compoted. Cabin dose, caused by the ingestion of particles at the aircraft's altitude, and sky-shine dose from the distributed cloud are compoted from the activity density.

1. Manned B-29 in Operation Snapper (1952 surface burst) and F-80 drones in Operation Upshot-Knothole (1956 airbursts).

The dust mass density of the clond is determined by the same method, if the equal activity-size groups are replaced by equal mass-size groups. The mass of dust trapped in a filter or passed through an engine can be found from the dust mass density.

Scope

This study highights modeling of the nuciear cloud and aircyaft likely to be exposed to the cloud. The initial nuclear cloud model is based on the AFIT Fallout Smear model (Ref 1). Changes to the model incinde finding new terms for the cioud horizontal distribution σ_{0} and the vertical normal distribution σ_{z} at stabilization time. The new terms are polynomials least-square fit to DELFIC predictions for σ_{0} and σ_{z} at cloud stabilization time. The horizontal expansion model of the cloud for later times is taken from the AFIT Smear Model as modified by Bridgman and Hickman (Ref 2).

The aircraft model uses a worst-case approximation for cabin dose, in that all of the dust that enters the cabin is assumed to stay there- However, allowance is made for particle removal from the air before entry into the pressurized cabin. This removal allows the effectiveness of known or proposed engine and filter designs to be considered. The same method is used to compate the mass of dust ingested by an engine or trappedin afiter.

A method of finding a realistic shielding factor for sky-shine radiation is developed to replace Kling's (Ref 10) approximation of a single 0.063 inch thick aluminum skin. This model is detailed enough so that the sky-shine dose can be considered a realistic estimate rather than a worst-case imit.

Speed, altitude, and payload for each aircraft used in this study were selected to reflect typical wartime missions. These parameters can be varied to allow for different missions or changed entirely to represent different aircraft.

Although other effects may be present, only tissue dose from external gamma radiation and dust ingestion in engines and firters are addressed in this report.

The crew dose and dust ingestion information provided by this study will allow planners to determine the threat to the aircraft if location, time of burst, yield and wind profiles are known. The aircraft's planned fight path or altitude can be changed to reduce the threat if required. The accompanying computer code also allows research into the effects of different particle size distributions, aircraft configurations, and types of filter.

Assumptions

Several explicit assumtions are made in this report. They

are:

1. The initial conditions for the stabilized cloud are those for DELFIC as shown in Appendix A.
2. The activity density of the nuclear cloud does not vary significanty within five gamma mean free paths of the aircraft.
3. All of the gammarays have energies of 1 MeV .
4. All of the dust that enters the cabin is trapped and there is no interinal shielding from the dust except by the air in the cabin.
5. The shielding factor for skyhine (external) radiation can be
found by using an 'average' mass integral taken directiy from the mass and surface area of the cabin and that all of the cabin mass has the gamma-ray cross section of aluminmm.

These assumptions are discussed in more detail later in the text.

Approach

The development of the nuclear cloud model and a sumary of the results for the baseline scenario in terms of activity density in Curies per vertical meter versus altitude at various times are presented in Chapter II. Also presented are resilts for larger and smaller particle size distributions. Nuclear clouds composed of more than one burst are examined.

The mathematical development for the external dose from both trapped cabin dust activity and sky-shine is presented in Chapter III. The results for a single, one megaton ground burst are then presented in tabular form. These tables incinde the doses received and the particle contributing the most activity at the specified altitude for several different aircraft.

Treatments of noclear cloud dust density, cabin air filters, and engine dust ingestion are in Chapter IV. Results for the same aircraft and nuclear clonds used in Chapter III are given.

Conclusions and recommendations are in Chapter V.
II. Cloud Mode1

Background

This chapter relies heavily on data computed by DELFIC. A brief description of this code will be given to clarify later discussion.

DELFIC is recognized as a benchmark against which other fallout codes are measured: however, its size, complexity and expense to run prevent easy use. DELFIC is constructed as a set of sequential modules. Here we are concerned only with the predicted initial, stabilized nuclear cloud. The modules of interest are Fireball, Cloud Rise, Interface, and Diffusive Transport. The cloud parameters at the end of Cloud Rise are printed at the beginning of the Diffusive Transport module.

A near surface nuclear burst generates a fireball that vaporizes a significant quantity of material from the target area. This vaporized soil mixes with vaporized weapon material, such as the weapon case, unburned fuel, and fission products, which are-highy radioactive. The Fireball module models this phase of the burst. A defant particle size distribution representing Nevada soil is built into DELFIC.

As the cloud rises, the vapors cool and the radioactive material is mixed in with condensed soil material. Fractionation occurs as materials condense at different temperatures: some of the radioactive material will be distributed throughout the volume while radioactive elements that melt at lower temperatures will condense on the surface of the particles. The number, size, and fractionation of the particles will be determined by the type of
weapon and the type of soil in the target area. The fractionation predicted by DELFIC along with the defant particle number-size distribution produces the default activity-size distribution used in DELFIC. This phase is described by the Cloud Rise module.

Examination of DELFIC output for this study shows that cloud stabilization occurs in two steps. In the first step, vertical stabilization takes place. This happens when all particles have reached their maximum altitudes and the largestones begin to fall back. This occurs from 3 to 6 minutes after the burst. The radius of the cloud that DELFIC predicts at this point is the value that Ruotanen (Ref 25) used to correct the standard deviation of the initial cloud radius, σ_{0}, for the WSEG model and is the value this study will use to determine σ_{0}.

In the second step, the cloud does not rise any further but continues to expand rapidiy in the horizontal direction. This is due to the momentum of the toroidal circulation which began during step one. The end of this second step is what is usally referred to as the stabilized cloud. The second step ends at 5 to 15 minutes after the nuclear burst.

The DELFIC Interface module couples the stabilized cioud to the winds over the target and allows the cloud particles to be blown downwind in the Diffusive Transport module. Further sections of the code determine the location, activity, and dose of the fallout on the ground. In this study, we will ase only the initial stabilized cloud. The parameters for this initial cloud are printed at the beginning of the Diffusive Transport section of a typical DELFIC printout.

DELFIC is a disc tosser code, so called because it subdivides
the particles in a cloud into monosize gronps, models each group as a disc, then tracks each disc as it falls and is blown downwind. DELFIC is normally set to track 100 discs. Each disc is in turn composed of 20 wafers, each containing 5% of the monosize particle group. The radii and the altitudes for the top and bottom of each wafer are printed in the output. The DELFIC data used in this study are reproduced in Appendix A.

The cloud model used in this study will be presented in the following manner.

First, particle size distributions will be discussed and the distributions used in this study will be presented. The distributions are converted into 100 equal activity-size and 100 equal mass-size groups.

Second, the model of the DELFIC initial cloud will be presented. This includes the stabilization time and radins of the cloud. The rigid DELFIC discs are converted to the 'smeared' discs of the AFIT Fallout Smear model. The determination of initial altitude and vertical distribution of each particle size group are then considered.

Third, a description of the activity distribution in the cloud will be developed.

Fourth, cloud growth, cloud fall, and smearing by wind will discussed.

Finally, clouds consisting of multiple bursts will be considered.

Particle Size Distributions

Dust particles found in nuclear burst clouds have particie size distributions that have been found to fit the cumulative lognormal function as described in Bridgman and Bigelow (Ref 2). This function is given as:

$$
F(r)=\frac{1}{\sqrt{2 \pi} \beta r} \exp \left\{-\frac{1}{2}\left[\frac{1 n(r m)-\alpha}{\beta}\right]^{2}\right\}[1 / m] \quad(1)
$$

where

$$
\begin{aligned}
a_{0} & =1 n(r m) \\
\beta & =1 n\left(\sigma_{I m}\right) \\
a_{n} & =a_{0}+n \beta^{2}
\end{aligned}
$$

A useful feature of cumulative lognormal functions is that different moments of the expression (represented by n) are also cumalative lognormal with the same slope. The value of n in this equation determines the type of distribution. A value of $n=3$ will create a volume distribution, and, if the particle density is uniform, a mass distribution. If $n=2$ then Eq (1) will
 number-size distribution results.

The values in Table \quad are numbersize distributions from Bridgman (Ref 3). Except for DELFIC they were computed from the experimentally determined cumulative lognormal activity-size distributions by using the 2.5 moment approximation suggested by Freiling, which is explained below.

Fractionation effects will canse refractory radionucides to be distributed throughout the volume of the particles, while volatile nuclides will be deposited on the surface. The ratio of
volume deposition to surface deposition is difficult to determine experimentaly or theoretically, but it must ife at a point between $n=2$ (all surface) and $n=3$ (all volume). As an approximation, Freiling suggested $n=2.5$.

The activity-size distribution of a nuciear cloud is generally found directiy by experiment. If that activity-size distribution is lognormal, then a lognormal nuber-size distribution can be computed, using Freiling's $n=2.5$. The number-size distributions in Table \quad were all compated in this manner except for the DELFIC defant distribution.

DELFIC activity-size distributions are found by DELFIC computing the fractionation of each decay chain of the fission products. Bridgman and Bigelow (Ref 2) found that the DELFIC activity-size distribution which results from this chain by chain calculation can be represented by the sum of two cumative lognormal distributions:

$$
\begin{equation*}
F(x)=F v c \operatorname{lnf}(n=3)+(1-F v) c \ln f(n=2) \tag{2}
\end{equation*}
$$

 Eq (2) to compute the DELFIC activity-size distribution. DELFIC is the only distribution in Table I to use this method.

TABLE I

Particle Number-size Distributions

NAME	$\mathrm{Im}(\mu \mathrm{m})$	$\sigma_{r m}$	SOURCE	REMARKS
TTAPS	. 25	2	Tarco	no tail
NRDL-N61	. 00039	7.24	Freiling	Nevada soil
NRDL-C61	. 0103	5.38	Freiling	Coral
NRDL-D	. 01	5.42	Polan	Nevada Dynamic
DELFIC	. 204	4	Polan	$\mathrm{F}_{\boldsymbol{V}}=.68$
USWB-HI	3.48	2.72	Polan	Hicap
US FB-LO	3.84	3	Polan	Locap
FORD-T	5.98	2.23	Poian	
RANDFSEG	10.6	2	Polan	
NRDL-SII	27.1	1.48	Polan	Saltwater II
NRDL-S I	36.8	1.51	Polan	Saltwater I
TOR-C	50.6	1.36	Polan	Coral

DELFIC was seifeted for the baseline case. NRDL-N61 and TOR-C were selected becanse they are extreme examples of 'small' and '1arge' size distributions. Figures (1) and (2) plot the cumulative activity-size and masstize fractions versus radias of the particle. Tables II through VII list the 100 equal activity and equal mass particle groups for these three distributions. They were generated by the program in Appendix C using Eq (1).

Figure 1. Cumulative Activity-size Fractions used in this study

Figure 2. Cumulative Mass-size Fractions used in this study

TABLE II

computed from rm $=.204$: $\sigma_{\text {rm }}=4: \mathrm{Fv}^{\text {m }}=.68$					
. 473	. 904	1.27	1.62	1.97	
2.32	2.68	3.04	3.41	3.80	
4.19	4.60	5.02	5.45	5.89	
6.35	6.83	7.32	7.82	8.35	
8.89	9.45	10.0	10.6	11.2	
11.8	12.5	13.2	13.9	14.6	
15.4	16.1	17.0	17.8	18.7	
19.5	20.5	21.4	22.4	23.5	
24.5	25.6	26.8	28.0	29.2	
30.5	31.8	33.2	34.7	36.2	
37.7	39.4	41.1	42.8	44.7	
46.6	48.6	50.7	52.9	55.1	
57.5	60.1	62.7	65.5	68.4	
71.4	74.7	78.1	81.7	85.5	
89.5	93.8	98.4	103.	108.	
113.	119.	126.	133.	140.	
148.	157.	167.	177.	189.	
202.	216.	232.	251.	272.	
297.	326.	361.	403.	457.	
529.	629.	782.	1064.	1917.	

TABLE III

DELFIC mean radii in microns of the 100 equal-mass groups computed from rm $=.204: \sigma_{\mathrm{rm}}=4: \mathrm{FV}_{\mathrm{m}}=.68$

1.83	3.21	4.30	5.28	6.20
7.10	7.97	8.84	9.71	10.5
11.4	12.3	13.2	14.1	15.0
15.9	16.8	17.8	18.7	19.7
20.7	21.7	22.8	23.9	24.9
26.1	27.2	28.4	29.6	30.8
32.0	33.3	34.7	36.0	37.4
38.8	40.3	41.8	43.4	44.9
46.6	48.3	50.0	51.8	53.7
55.6	57.6	59.6	61.7	63.9
66.2	68.5	71.0	73.5	76.1
78.8	81.6	84.6	87.6	90.8
94.1	97.6	101.	105.	108.
113.	117.	122.	126.	132.
137.	143.	149.	155.	162.
169.	177.	185.	194.	203.
214.	225.	237.	251.	265.
282.	300.	320.	343.	370.
400.	436.	478.	531.	596.
682.	802.	985.	1318.	2311.

TABLE IV

NRDL-N61 mean radii in microns of the 100 equal-activity groups computed from $r m=.00039: \sigma_{\mathrm{rm}}=7.24$

.0432	.095	.145	.194	.245
.296	.350	.406	.464	.524
.587	.652	.720	.790	.864
.940	1.02	1.10	1.18	1.27
1.37	1.47	1.57	1.67	1.78
1.90	2.02	2.14	2.27	2.41
2.55	2.70	2.85	3.01	3.18
3.36	3.54	3.73	3.93	4.14
4.35	4.58	4.82	5.07	5.33
5.61	5.89	6.19	6.51	6.84
7.19	7.55	7.94	8.34	8.77
9.22	9.70	10.2	10.7	11.2
11.8	12.5	13.1	13.8	14.6
15.4	16.3	17.2	18.2	19.2
20.3	21.6	22.9	24.3	25.8
27.5	29.3	31.3	33.4	35.8
38.4	41.3	44.6	48.2	52.3
57.0	62.3	68.4	$\cdots 5.5$	83.9
94.0	106.	121.	140.	166.
201.	253.	340.	517.	1161.

TABLE V

NRDL-N61 mean radii in microns of the 100 equal-mass groups computed from rm $=.00039: \sigma_{\text {rm }}=7.24$

.303	.678	1.02	1.37	1.73
2.10	2.48	2.87	3.29	3.71
4.16	4.62	5.10	5.60	6.12
6.66	7.23	7.82	8.43	9.07
9.74	10.4	11.1	11.9	12.6
13.5	14.3	15.2	16.1	17.1
18.1	19.1	20.2	21.4	22.5
23.8	25.1	26.4	27.8	29.3
30.9	32.5	34.2	35.9	37.8
39.7	41.8	43.9	46.1	48.5
51.0	53.6	56.3	59.2	62.2
65.4	68.8	72.3	76.1	80.1
84.3	88.7	93.5	98.5	103.
109.	115.	122.	129.	136.
144.	153.	162.	172.	183.
195.	208.	222.	237.	254.
272.	293.	316.	342.	371.
404.	441.	485.	535.	595.
666.	752.	860.	996.	1177.
1427.	1797.	2409.	3651.	8140.

TABLE VI

TOR-C mean radii in microns of the 100 equal-activity groups computed from $\mathrm{rm}=50.6: \sigma_{\mathrm{rm}}=1.36$

29.0	32.8	35.0	36.7	38.0
39.2	40.2	41.1	42.0	42.8
43.5	44.3	44.9	45.6	46.2
46.9	47.5	48.0	48.6	49.2
49.7	50.2	50.8	51.3	51.8
52.3	52.8	53.3	53.8	54.3
54.7	55.2	55.7	56.2	56.6
57.1	57.6	58.1	58.5	59.0
59.5	59.9	60.4	60.9	61.4
61.9	62.3	62.8	63.3	63.8
64.3	64.8	65.3	65.8	66.3
66.8	67.3	67.9	68.4	69.0
69.5	70.1	70.6	71.2	71.8
72.4	73.0	73.6	74.3	74.9
75.6	76.3	77.0	77.7	78.4
79.2	80.0	80.8	81.6	82.5
83.4	84.4	85.4	86.4	87.5
88.7	89.9	91.2	92.7	94.2
95.8	97.7	99.7	102.	104.
107.	111.	117.	124.	141.

TABLE VII

TOR-C mean radii in microns of the 100 egnal-mass groups computed from $\mathrm{rm}=50.6: \sigma_{\mathrm{rm}}=1.36$

30.4	34.4	36.7	38.4	39.8
41.1	42.1	43.1	44.0	44.9
45.7	46.4	47.1	47.8	48.5
49.1	49.8	50.4	51.0	51.5
52.1	52.7	53.2	53.8	54.3
54.8	55.3	55.9	56.4	56.9
57.4	57.9	58.4	58.9	59.4
59.9	60.4	60.9	61.4	61.9
62.4	62.9	63.3	63.8	64.3
64.8	65.4	65.9	66.4	66.9
67.4	67.9	68.5	69.0	69.5
70.1	70.6	71.2	71.7	72.3
72.9	73.5	74.1	74.7	75.3
75.9	76.6	77.2	77.9	78.6
79.3	80.0	80.7	81.5	82.2
83.0	83.9	84.7	85.6	86.5
87.5	88.5	89.5	90.6	91.8
93.0	94.3	95.7	97.1	98.7
100.	102.	104.	107.	10.9.
113.	117.	122.	130.	148.

Initia1 Stabilized C1oud

The initial cloud is modeled as an upight circular cylinder that resembles a tomato soup can, as in Figure 3. The DELFIC data for stabilization time and horizontal cloud radins as a function of yield were least-squares fit to a polynomial in $1 \mathrm{n}(\mathrm{Y})$ for this study. The data taken from DELFIC to generate these fits are reproduced in Appendix A. The expressions to fit the DELFIC data are:

$$
\begin{align*}
T_{v s}= & 385.295-99.1476(1 n Y)+64.6314(1 n Y)^{2} \\
& -8.21379(1 n Y)^{3}+.323598(1 n Y)^{4}[s]
\end{align*}
$$

Where $T_{v s}$ is vertical stabilization time in seconds and Y is yield in kilotons: and

$$
\begin{align*}
S_{0}= & 868.277-632.399 \ln Y+625.132(\ln Y)^{2} \\
& -112.586(1 n Y)^{3}+7.16648(1 n Y)^{4}[m] \tag{4}
\end{align*}
$$

Where S_{0} is the cloud radins in meters at vertical stabilization time. This radius is assumed here to represent a $2 \boldsymbol{\sigma}$ distribution so that when finding σ_{x} and σ_{y} using the formalae for toroidal growth (discussed later in this section), the initial cloud horizontal distribution σ_{0} will be

$$
\begin{equation*}
\sigma_{0}=\frac{S_{0}}{2} \tag{5}
\end{equation*}
$$

The expressions for the time since burst and cloud radius at the end of horizontal stabilization step are given in Appendix A.

In this stady, no DELFIC information for times later than vertical cloud stabilization is used.

Hopkins (Ref 11) developed a fit for the vertical distribution of the cloud. Hopkins ran DELFIC with fields from 1 kiloton to 15 megatons and fitted particie size versus altitude to a linear function for each gield. The altitude used for this was the average center altitude of all of the wafers for a given particle size group. The slopes and intercepts were then fit to polynomials in logarithmic yield so that

$$
\begin{equation*}
z_{0}^{i}=I_{m}+2 r m^{i} S_{m} \quad[m] \tag{6}
\end{equation*}
$$

Where rmis the mean radins of the particle size group in microns, $z_{0}{ }^{i}$ is the initial center altitude of each particiegroup distribution in meters, $\quad I_{m}$ is the (zero-radius) intercept in meters, and S_{m} is the slope in meters (of altitude) permicron (of radins). Hopkins found:

$$
\begin{align*}
I_{m}= & \operatorname{EXP}\left\{7.889+0.34(\ln Y)+.001226(\ln Y)^{2}\right. \\
& \left.-.005227(\ln Y)^{3}+.000417(\ln Y)^{4}\right\} \tag{7}\\
S_{m}= & -\operatorname{EXP}\left\{1.54-.01197(\ln Y)+.03636(\ln Y)^{2}\right. \\
& \left.-0.0041(1 n Y)^{3}+.0001965(1 n Y)^{4}\right\} \tag{8}
\end{align*}
$$

Where Y is the yield in kilotons.
Hopkins developed the above equations using the dELFIC default particie size distribution. Many DELFIC rans were made with a variety of particle size distributions for this study. It was determined that Hopkins' size versus altitude function does
not change when different size distributions are used. This is discussed further in Appendix A.

Bridgman and Hickman (Ref 2) incorporated Hopkins' vertical cloud distribution into the AFIT Smear Code fallout model, and further assumed that the vertical distribution of each size group was gaussian with

$$
\begin{equation*}
\sigma_{z}^{i}=.18 z_{0}^{i} \quad[m] \tag{9}
\end{equation*}
$$

i.e. the higher the particle, the larger its σ_{z}. Study of DELFIC data has shown that this approximation is valid only for fields above 1 megaton. Particles lofted by megaton size yields have a nearly constant σ_{z} at all altitudes, while sub megaton yields show a decreasing σ_{z} with increasing altitude. The DELFIC data for vertical particie distribution were incorporated in a polynomial least-squares fit to yield in manner similar to Hopkins' fit for particle initial altitude,

$$
\begin{equation*}
\Delta z^{i}=I_{d}+2 \mathrm{rm}^{i} S_{d} \quad[m] \tag{10}
\end{equation*}
$$

where Δz^{i} is the predicted vertical thickness of the $i^{t h}$ monosize particle group and I_{d} and S_{d} are the intercept and slope. It was found that

$$
\begin{aligned}
S_{d}= & 7-\operatorname{EXP}\left\{1.78999-.048249(1 n Y)+.0230248(1 n Y)^{2}\right. \\
& \left.-.00225965(1 n Y)^{3}+.000161519(1 n Y)^{4}\right\} \\
I_{d}= & \operatorname{EXP}\left\{7.03518+.158914(1 n Y)+.0837539(1 n Y)^{2}\right. \\
& \left.-.0155464(1 n Y)^{3}+.000862103(1 n Y)^{4}\right\}
\end{aligned}
$$

The σ_{z} is then arbitrarily taken as

$$
\begin{equation*}
\sigma_{z}^{i}=\frac{1}{4} \Delta z^{i} \quad[m] \tag{13}
\end{equation*}
$$

That is, Δz is assumed to be a 2σ distribution about a point midway betwen the top and bottom of the Δx fanction. Functions
 and lower limits of each monosize particie group can be found in Appendix A. Hopkins' formalae Eq (7,8) arefits to the average altitude of the 20 wafer centers in each group.

C1ond Activity Distribntion

The cloud takes 3 to 6 minates to stabilize vertically at a height and diameter depending on weapon yield. The initial, stabilized, nuclear cloud is modeled as a right circular. cylinder. The cylinder represents the limits of a \quad normal distribution in the lateral dimensions and the limit of the sum of the $2 \boldsymbol{\sigma}$ normal distributions of the airborne particle groups in the vertical dimension. See Figure 3.

The activity in the cloud varies as a function of position and time. The vertical distribution of the different size groups is assumed to be that of DELFIC, as modeled by Hopkins. Each individual particie size group is assumed to be normally distributed both verticaly and horizontally: and these spatial distributions are assumed to be independent of each other. Thas the activity density $A^{\prime \prime \prime}$ at a point in the cloud is

$$
A^{\prime}, \cdot(x, y, z, t)=\int_{0}^{\infty} A_{r} \cdots(x, y, z, r, t) d r \quad\left[C i / m^{3}\right] \quad(14)
$$

where $A^{\prime \prime \prime}(x, y, z, r, t)$ is the specific activity density in

Curies/m ${ }^{3}$ micron. The three spatial dimensions are independent, thus separable. The horizontal distributions in (x,y) are assumed to be independent of particle size rothat

$$
A_{r} \prime^{\prime \prime}(x, y, z, t)=f(x, t) f(y, t) \int_{0}^{\infty} A_{r}(z, r, t) d r \quad\left[C i / m^{3}\right](15)
$$

Where $A_{r}^{\prime}(z, r, t)$ is the specific activity in Curies per meter of altitude per micron of radius as anction of r and time t. The normalized horizontal distributions are of the form

$$
\begin{align*}
& f(x, t)=\frac{1}{\sqrt{2 \pi} \sigma_{x}(t)} \quad \exp \left\{-\frac{1}{2}\left[\frac{x-x_{0}}{\sigma_{x}(t)}\right]^{2}\right\} \quad[1 / m] \quad(16) \\
& f(y, t)=\frac{1}{\sqrt{2 \pi} \sigma_{y}(t)} . \exp \left\{-\frac{1}{2}\left[\frac{y-y_{0}}{\sigma_{y}(t)}\right]^{2}\right\} \tag{1/m}
\end{align*}
$$

where the point x_{0}, y_{0} is defined as the center of the cloud.
The integral in Eq (15) can be replaced by a sumation over 100 discrete monosize particle groups.

$$
\begin{equation*}
\int_{0}^{\infty} A_{r}^{\prime}(z, r, t) d x=\sum_{i=1}^{100} A^{i} f^{i}(z, t) \quad[C i / m] \tag{18}
\end{equation*}
$$

where each group A^{i} contains 1% of the total activity at unit time and the normalized vertical activity distribution for each group is

$$
f^{i}(z, t)=\frac{1}{\sqrt{2 \pi} \sigma_{z}} \quad \exp \left\{-\frac{1}{2}\left[\frac{z^{i}-z}{\sigma_{z}^{i}}\right]^{2}\right\} \quad[1 / m](19)
$$

σ_{x}, σ_{y}, and σ_{z} will be discussed later in this chapter.

Figure 3. Initial Cloud

Figure 4. Late Time Cloud

Now, Eq (14) can be rewritten as
$A^{\prime},(x, y, z, t)=f(x, t) f(y, t) \sum_{i=1}^{100} A^{i} f^{i}(z, t) \quad\left[C i / m^{3}\right] \quad(20)$

Note that this equation gives the activity density for any point in the cloud. If we set $\Delta x=x-x_{0}=0$ and $\Delta y=y-y_{0}=0$ in Eq (16,17), we have the activity at the horizontal cloud center as a function of altitude, which is the maximum activity density at any altitude.

Finally, activity is a function of time, as radioactive decay takes place. The Way-Wigner approximation is used:

$$
A(t)=A_{1} t^{-1 \cdot 2} \quad\left[C_{i}\right]
$$

(21)
where $A(t)$ is the total activity in Curies at a given time t in hours since burst and where A_{1} is equal to 530 gamma megacuries per kiloton of fission yield at unit time (1 hour since burst) (Ref 8).

This completes our description of the. initial stabilized cloud. In the next section we will consider horizontal cloud growth due to wind shear and toroidal cloud expansion, and vertical cloud growth as the particles fall to the ground.

Late_Time_C1으므

We define the term $\sum_{i=1} A^{i} f^{i}(z, t)$ in Eq (20) as $f(z, t)$,
the (total) activity per vertical meter. Values for f(z,t) used in this study are shown in Figures 6-9. These vertical activity densities can be converted to Curies/meter (the activity density)
by evaluating $f(x, t)$ and $f(y, t)$ in $E q(16,17)$ for $E q(20)$. This requires that the horizontal size of the cloud, in terms of σ_{x} and σ_{y}, be found.

DELFIC output for this study included information only on the initial cloud conditions. No attempt was made to model the cloud in time. Therefore, the toroidal growth and wind shear terms incorporated in the AFIT Fallout Smear Code for or and or are retained.

Wind shear is the term representing the change in wind velocity with altitude normally observed in the atmosphere. The total wind shear is composed of two components. Directional shear is due to a change of wind direction with altitude, and sped shear is due to a change of wind sped with altitude. These two factors are sumped in quadrature to obtain the total shear S_{t} in $\mathbf{k m} / \mathbf{h r}-\mathbf{k} \mathrm{m}$.

The upright circular cylinder used to describe the initial cloud is stretched in the direction of the total wind shear (due to the difference in velocity of the top and bottom of the cloud) until the cloud resembles a sardine can from above as depicted in Figure 4.

Fallout models designed to produce ground dose, such as WSEG or the $A F I T$ Smear model, usaliy employ a single constant wind (assumed to be in the x direction) for simplicity in determining the fallout hotline. For this'average' single constant wind, the speed shear term is applied to the downwind direction and the directional shear term is applied to the transverse (crosswind) direction. The directional shear used in WSEG and AFIT models is called S_{y} and is given a valne of 1 km/hr-km. The speed shear,
S_{x}, is ignored becanse any elongation of the cloud in the downwind direction will change the time of deposition, not the amonnt, of fallout. The cloud is transported downwind by the average wind velocity $\boldsymbol{v}_{\mathrm{x}}$ and translated crosswind by the directional shear S_{y} 。 Hickman (Ref 10), who developed an airborne dose model from the AFIT Smear model, and Kiing (Ref 16), who refined Hickman's model, retained this interpretation of the single constant wind in their theses. In effect, the aircraft was held fixed at a point over the ground and the cloud passed it at velocity vequal to the aircraft cruise speed. Bridgman and Hickman (Ref 2) recognized that, for an airborne cloud penetration, the choice of a preferred coordinate system was arbitrary: relative to an aircraft penetrating the cloud, the wind conld be from any direction. They arbitrarily assigned S_{y} equal to S_{y} and applied them to σ_{x} and σ_{y} respectively, as discussed later in this section.

That assumpion of similar magnitudes for S_{x} and S can be improved upon. A typical wind has a speed shear of 8 to 10 km/hr-km, an order of magnitude larger than the directional shear of $1 \mathrm{~km} / \mathrm{hr}-\mathrm{km}$ proposed by WSEG. This means that the cloud will be elongated mach more in the downwind direction (due to speed shear)
2. This can be verified by watching a typical summer thunderstorm, which has dimensions similar to a nuclear cloud (for similar reasons: the energy released in a thunderstorm is the same or greater than a nuciear borst). The main shaftof the thunderstorm resembles Figure 4 when seen from the side, stretching from west to east. During the storm's mature stage, the direction and speed of the stratospheric winds can be easily visualized as they blow off' the top cloud layers. This upper level wind velocity can be compared to that perceived at the surface (beyond the distance that the storm's gast front reaches) to obtain a feeling for the quantities involved.
than in the crosswind direction (due to directional shear). Becanse this downind elongation was ignored by Hickman and King, the activity densities (and dose rates) inside their cloud models can be considered too high. In the next chapter, however, we will see that elongation of the cloud in the direction of penetration (assumed by Hickman and King to be downwind) will not affect dose.

- In this study, the motions of an aircraft are considered relative to the surrounding air, not the ground. The aircraft is allowed to penetrate the clond at any altitude, direction, airspeed, or time after the burst. Thus speed as well as directional shear is required. Becanse we are concerned only with the cloud and the aircraft, we will ignore the gronnd and define the axis as relative to the aircraft and in the direction of its velocity vector. Total shear will be broken down into its components relative to the aircraft direction, rather than relative to the wind direction. This is equivalent to choosing an aircraft cloud penetration angle relative to the wind direction (see Figure 5) by using the 1aw of cosines.

These shears are defined as:

$$
\begin{array}{ll}
S_{x}=d V_{x} / d z & {[1 / h r]} \\
S_{y}=d V_{y} / d z & {[1 / h r]} \tag{23}
\end{array}
$$

where S is wind shear and V is the wind velocity. The x and y coordinates are now referenced to the aircraft, where x is in the direction of the aircraft heading and y is at right angles to this.

Vertical Axis: Activity Density
Horizontal Axes: Position

Figure 5. Penetration of Late Time Cloud

The total shear S_{t} is equal to the square root of the sum of $\left(S_{x}\right)^{2}$ and $\left(S_{y}\right)^{2}$. In this study, we will take $S_{y}=1 / h y$ and $S_{x}=$
 purposes. In the next chapter, we will see how penetration direction affects dose.

From FSEG, the empirical formalae relating shear to the standard deviation of the normal distributions are

$$
\begin{align*}
& \left(\sigma_{x}\right)^{2}=\left(\sigma_{0}\right)^{2}\{1+(8 \mathrm{TA}) / T \mathrm{~T}\}+\left(\sigma_{z} S_{x} t\right)^{2} \quad[\mathrm{~m}] \tag{24}\\
& \left(\sigma_{y}\right)^{2}=\left(\sigma_{0}\right)^{2}\{1+(8 \mathrm{TA}) / \mathrm{TC}\}+\left(\sigma_{z} S_{y} t\right)^{2} \quad[m] \tag{25}
\end{align*}
$$

where $T A=t$ for times less than three hours and TA $=3$ for times greater than three hours, and TC from WSEG is
$\mathrm{TC}=12\left(\mathrm{H}_{\mathrm{c}} / 304.8\right) / 60-\left\{2.5\left(\left(\mathrm{H}_{\mathrm{c}} / 304.8\right) / 60\right)^{2}\right\} \quad[1 / \mathrm{hr}] \quad(26)$

Polan (Ref 24) incorporates a correction factor so that

$$
\operatorname{TCP}=\operatorname{TC} 1.05732\left(1-.5 \operatorname{EXP}\left\{-\left(\left(\mathrm{H}_{\mathrm{c}} / 304.8\right) / 25\right)^{2}\right\}\right)[1 / \mathrm{hr}] \quad(27)
$$

TCP is the time constant for the toroidal growth term in this study. Toroidal growth is assumed to stop at the end of three hours. H_{c} is the cloud activity center height. In this study, the empirical H_{c} from WSEG is not used, but rather He is taken from Hopkins formula Eq (6) where rmi for the median size particle group ($i=50$) is selected.

The fall mechanics of the particles in each size group behave according to the equations of McDonald (Ref 18) and Davies (Ref 6) after Bridgman and Bigelow (Ref 1). An atmospherewith no vertical wind is assumed.

The fall velocity of each gronp is found by this method and the distance fallen in an interval is

$$
\begin{equation*}
z_{j}^{i}=z_{j-1}^{i}-v^{i} \Delta t \quad[m] \tag{28}
\end{equation*}
$$

where $z_{j}{ }^{i}$ is the new altitude of the vertical distribution center of particle size group ind $\mathrm{z}_{\mathrm{j}}^{\mathrm{i}-1}$ is the altitude at the end of the previous interval.

The fall velocity ${ }^{i}$ is determined by the atmospheric density and viscosity at altitade $\mathrm{z}_{\mathrm{j}}^{\mathrm{i}} \mathrm{C}$. The initial altitude the particle falls from is given by Eq(6). The interval Δt must be small enough so that the atmospheric properties do not change significantly in the distance fallen during the interval.

It was determined by Hickman (Ref 10) and $K 1 i n g(R e f 16)$ and confirmed in this study that at early times (less than about one hour) the cloud fall calculations are inaccurate with time intervals of less than 0.1 hour. Each interval uses a large amont of computer time. A variable Δt was found to reduce the amount of calculation needed. For times greater than one hour, Δt can be increased because the heaviest particles have already fallen out' and the remaining cloud setties more slowiy with time. Also, particle groups more than $3 \boldsymbol{\sigma}$ amay from the aircraft or more than 3σ below ground level can be ignored. With these modifications, the cloud model can be advanced 48 hours fromburstime in less than 35 minutes on atypical 8 bit home computer (Kaypro II).

Solutions for specific activity in Curies per verticalmeter from Eq (20) for a variety of times and altitudes and the DELFIC default particle size distribution are shown in Figure 6.

Figures 7 and 8 show solutions for sizes weighted towards smaller (NRDL-N61) and larger (TOR-C) distributions.

Note that both NRDL-N61 and TOR-C have larger specific activities than DELFIC at the vertical activity centers. This is balanced by lesser activities at other altitudes. It can been that for DELFIC and NRDL-N61, the setting rate of the dust through the atmosphere is unimportant compared to the rate at which the activity decays with time. In these cases, the vertical activity center remains near its initial stabilized altitude antil the activity has decayed to low levels. An aircraftmay reduce its exposure by flying as far below or above the peat activity as feasible: although the latter is unlikely for megaton size yields.

Figure 8 for TOR-C shows that the large particles in this distribution settle very quickly compared to the decay rate: in this case, an aircraft may be better advised to stay high after about an hour after burst. This plot is presented again in Figure 9 with a linear activity scale so that the cloud fall may be more easily visualized.

These plots are presented based on a fission fraction of 1 so that activities for any desired fission fraction can be fornd by applying a simple multiplicative factor. Dose calculations in the next chapter will be carried out with a fission fraction of. 5 , which is more nearly representative of ane megaton burst.

figure 9 - tor-C activity - one megaton

Multiple_Bursts

Crandey (Ref 5) has shown that maltiburst attack on a limited area, such as missile field, can be modeled by a simple burst amplification factor applied to the activity density of a single burst case.

For target field of dimensions la by wo attacked by atotal of $N=N x \cdot N y$ uniformly distributed equal field bursts,
$f\left(x, t_{a}\right)=\frac{\sqrt{N}}{L x} \int_{-z}^{+z} \frac{1}{\sqrt{2 \pi} \sigma_{x}\left(t_{a}\right)} \exp \left\{-\frac{1}{2}\left[\frac{x-v_{x} t_{a}}{\sigma_{z}\left(t_{a}\right)^{2}}\right]^{2}\right\} d x(29)$
where $z=L x / 2, \nabla_{x}$ is the wind velocity, and a similar expression for $f\left(y, t_{a}\right)$. These reduce to

$$
\begin{equation*}
F_{X}=\frac{N_{x}}{L_{x}} \sqrt{2 \pi} \quad \sigma_{X}\left(t_{a}\right) \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
F y=\frac{N_{y}}{W_{y}} \sqrt{2 \pi} \quad \sigma_{y}\left(t_{a}\right) \tag{31}
\end{equation*}
$$

where the burst amplification factor F is maltiplied by the single burst activity density in Eq (16) to produce the maltiburst activity density. This factor can also be applied to the dust density in Chapter IV.

The next two chapters must be considered before results for maltiburst dose and dust ingestion can be fond. Appendices I and J present results for maltiburst attack of $\mathbf{3 0 0}$ one megaton weapons in a 150 km square field.

III. Dose Analysis

Background

There are four way that an aircraft crew can be exposed to gamma radiation from a melear cloud. They are ground-shine, skin-shine, sky-shine, and exposure to the radioactive dust that enters with the air provided to pressurize and cool the cabin and equipment.

Ground-shine is disregarded in this study. Hickman and King have previously shown that ground-shine exposure to an arcaftis negligible for an aircraft flying a few gammanan free paths above the ground. At sea level, the 1 MeV gamma mean free path is 120 meters. . Hickman (Ref 10) has shown that for an aircraft flying 305 meters above the ground, the dose rate at the aircraft is equal to 10^{-11} times the ground activity.

Skin-shine results from nuclear cloud particies attached to the outer skin of the aircraft. No quantifiable information on this phenamenon could be found. However, dust particies small enorgh to stay airborne for significant periods may not be able to penetrate the aerodyamic boundary layer outside the skin of the aircraft and attach to the skin in numbers large enough to cause a significant dose to the crew inside. Skin-shine will be dis regarded as being beyond the scope of this study.

The baseline aircraft used to compate sky-shine and cabin dose in this study is a KC-135 aircraft. For simplicity, doses are computed for the center of the cabin. Note that the model used in this stady is very different from those employed by

Hickman and Kiing. Different cabin sizes, shielding factors, and airflow rates are used. It should also be noted that the KC-135 and EC-135 aircraft are based on the Boeing 717 which is very different from a Boeing 707. The E-3 is based on the 707 not the KC-135. These differences will be discussed in more detail later.

Cabin Geometry

The internal dimensions of the cabin are assumed to be a cyinder. Although a cyinder is a reasonable model for most aircraft cabins, some adjustments need to be made. For instance, the values used by Hickman and King for cabin radius and length result in a volume more than twice as large as the pressurized volume stated for the cabin, resalting in toomach dose. Part of this is due to a too large radius, but the rest is due to the fact that in a KC-135 or EC-135 aircraft (Boeing 717, NOT 707) the floor is a pressure bulkead. The entire circular cross section of the fuselage is not pressurized.

To allow for variations of the simplified cylindrical model compared to the real aircraft, a pseudolength is used for this model. This length represents the value obtained by dividing the pressurized volume of the cabin by the cross sectional area \{pressurized volume/($\left.\pi r^{2}\right)=$ psendolength\}. This is the cabin length that will be used for the cabin dose rate integral described later in this chapter. Length is chosen to vary rather than radius becanse radins is the most accurately known and least variable dimension, and because the cabin geometry factor is more sensitive to radins than length.

In the case of certain aircraft, such as the B-52 or B-1 with
square or triangular cabin cross sections, both length and radius must be adjusted to find a cyinder similar to the cabin configuration and having the same volume. Appendix D provides the data needed to evaluate a variety of aircraft. Numers shownare for a typical operational wartime mission for each aircraft.

Sky-shine Shielding

Attenuation of gamma rays by any material follows the formula

$$
\begin{equation*}
A=A_{0} e^{-\left(\mu_{t} / \rho\right) M I}\left[C_{i}\right] \tag{32}
\end{equation*}
$$

Where A_{0} is the incident gamma activity, μ_{t} / ρ is the gamma ray attenuation coefficient in $m^{2} / k g$, $M I$ is the mass integral in $\mathrm{kg} / \mathrm{m}^{2}$, and A is the activity after passing through the shield. The dimensionless exponential term $e^{-\left(\mu_{t} / \rho\right)} M I$ will be referred to as the gamma transmission factor $\mathrm{T}_{\boldsymbol{\gamma}}$.

The shielding model developed for this study finds the mas integral by dividing the mass of the cabin by the surface area of the cabin, resulting in the desired $k /^{2}$ for the mass integral. This model-necessitates the assumpions:

1. The mass and area of the wings, tail, fuel, and in bombers the fuselage aft of the crew compartment are ignored.
2. The radiation from the distributed cloud is isotropic.
3. The cabin wall is homogeneous. It is composed of a single material (aluminum), which is evenly distributed with a single thickness.

Although these assumptions may seem quite limiting, in practice they are not. In fact, they are generally conservative. The wings and tail in the first assumption may provide a good
shield, but they subtend a small angle as observed from the cabin, thas contributing iftle to overall shielding. The amonnt of fuel carifed in the fuselage (if any) varies with time, and is ignored for simplicity. The fuselage aft of the crew compartment on bomber type aircraft can be considered an infinite shield. The angle subtended by the shield is highly variable at different points within the cabin, however. The aft fuselage is also ignored for simplicity. These are conservative choices.

Isotropic radiation from the distributed cloud was assumed in the previous section and does not pose a problem.

In the last case, about 80% of typical aircraft structure and equipment is aluminum and most of the remainder is low atomic nomber material with similar cross sections for gamma rays in the 1 MeV range.

A11 mass, including equipment inside the cabin, is included in the shield. Numerical analysis of sereral worst case mass distributions in the cabin leads to the conclusion that any reduction in shielding due to anisotropic mass distribution would be similar in magnitade to the increase in shielding realized by using. a cylindrical rather than the implied spherical geometry, thus justifying the assumpions. These factors are on the order of -15% and $+15 \%$ for a KC-135 type aircraft. The third assumpion implies a spherical geometry for the shield becanse we assumethe attenuation to be uniform for walls of a single, constant, thickness. This implied geometry is conservative: For a fixed wall thickness, any enclosed volume will receive the least shielding from a sphere.

Sky-shine Dose Rate

As the aircraft approaches the cloud, it will not be exposed to a significant amount of radiation until it is within a few gamma mean free paths of the cloud. Activity will rise until it reaches a peak at the center of the cloud, and will then falloff as the aircraft exits the cloud. There are three assuptions to be made at this point:

1. The activity density of the clond does not vary vertically within a few gamma mean free paths.
2. The 1ateral clond dimensions are at least 5 gama mean free paths.
3. The aircraft does not penetrate the cloud prior to stabilization.

These assumpions are needed so that the integration for dose rate can be carried out analytically. The first two assumtions establish that the clond is homogeneous in the vicinity of the aircraft. These assumptions are unlikely to be violated except at times less than 1 hour and altitudes above 40,000 feet. Any aircraft violating the last assumpion is likely to be destroyed either by prompt effects or by turbulence and debris in the rising fireball.

The activity density $A^{\prime \prime \prime}(x, y, z, t)$ in $C i / m^{3}$ for the nuclear cloud is given by Eq (20). An aircraft immersed in the cloud will experience a dose rate from sky-shine calcalated from the spherical integral
$\dot{D}=C A \cdot \cdots(x, y, z, t) \int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{S} \frac{\mu a}{\rho} \frac{e^{-\mu} t^{s} s^{2}}{4 \pi s^{2}} \sin \theta d \phi d \theta d s \quad(33)$
where $A^{\prime \prime \prime}(x, y, z, t)$ is the activity density in the cloud and s is the radial direction from the aircraft. C is a factor to convert activity to dose rate and has a value of 2131 [rem-kg/Ci-hr] for 1 MeV gamma rays. The term μ_{a} / ρ is the tissue absorption coefficient, and μ_{t} is the total attenuation coefficient of air.

The attenuation due to the self-shielding of dust suspended in the air is negligible and is ignored. Information on dust densities developed in the next chapter is found in Appendices H and J. Comparing dust density to air density indicates that self-shielding from dust amounts to less than 0.3\% of the self-shielding due to air for a single legaton burst.

Integrating Eq (33) allowing S to approach infinity, and allowing for cabin shielding with the gammatransmission factor $\boldsymbol{T}_{\boldsymbol{\gamma}}$ from Eq (32), the dose rate inside the cabin is

$$
\begin{equation*}
\dot{D}=C T_{\gamma} A \cdot \prime(x, y, z, t) \quad \frac{1}{\mu_{t}} \frac{\mu_{a}}{\rho} \quad[r e m / h r] \tag{34}
\end{equation*}
$$

where activity is still at unit time reference and mast be converted to penetration time by the Way-Wigner decay formala.

If the aircraft flies completely through the cloud in the x direction with velocity v_{x} then the sky-shine dose inside the cabin will be
$D=\int_{-\infty}^{+\infty} \dot{D}\left(x, y, z, t^{\prime}\right) d t^{\prime}=\int_{-\infty}^{+\infty} \dot{D}\left(x, y, z, t_{a}\right) d x / v_{x} \quad[r e m] \quad$ (35$)$ where $d x=v_{x} d t^{\prime}$ and $t^{\prime}=0$ when $t=t_{a}$, the cloud penetration time. The cloud penetration time is defined as the time when the
aircraft passes the cloud centerinine, $y=y_{0}$.
Computing dose in this fashion assumes that the activity density profile in the clond is constant with respect to both cloud expansion and activity decay with time. The cloud is therefore 'frozen' at time $t=t$ during the aircraft transit.

A rigorous treatment would have the activity density higher on the entry side of the clond than on the exit side, since the cloud is expanding and activity is decaying during the time it takes the aircraft to transit the clond. However, a numerical analysis for this study has shown that a rigorous treatment tends to average the doses received on each side of the cloud so that the cloud 'frozen' at $t=t_{a}$ in this study results in doses within 1% of the more detailed treatment for typical cloud sizes and aircraft velocities.

Collecting and expanding terms from Eq (35), dose is
$D=\frac{T_{\gamma}}{3600 V_{x}} \frac{C}{\mu_{t}} \frac{\mu_{a}}{\rho} f(y, t) A^{\prime}(z, t) \int_{-\infty}^{+\infty} f(x, t) d x[r e m](36)$

Where the factor 3600 changes velocity from m/s to m/hr to match the conversion constant C. For an aircraft figing through the center of the cloud, $x-x_{0}=0$ and $y-y_{0}=0$. From Eq (17), $f(y, t)$ then reduces to $\left(\sqrt{2 \pi} \sigma_{y}\right)^{-1}$. From Eq (16), the above integral of $f(x, t)$ is then just equal to unity, the valne of the cumalative lognormal function integrated over all x.

Thus the dose is
$D=\frac{T_{\gamma}}{3600 V_{X}} \frac{C}{\mu_{t}} \frac{\mu_{a}}{\rho} \frac{(1)}{\sqrt{2 \pi} \sigma_{y}}$ $A^{\prime}(z, t) \quad[r e m]$
(37)
where $A^{\prime}(z, t)$ is the activity per vertical meter found in Eq (18) . Figures 6 throngh 9 show the numerical results found for $A^{\prime}(z, t)$ in the cases used for this study.

Cabin Dust Dose Rate

The aircraft fies through the cloud in the x direction sweping out all of the activity at a given altitude. The activity in a \quad nit cross section of the cloud projected along the x axis is $A^{\prime \prime}(y, z, t)$, wich might be described as an 'activity-integral' analogous to the 'mass-integral' MI.

$$
A^{\prime} \prime(y, z, t)=f(y, t) A^{\prime}(z, t) \int_{-\infty}^{+\infty} f(x, t) d x \quad\left[C i / m^{2}\right] \quad(38)
$$

where $f(y, t)$ is found from Eq (17) and $A^{\prime}(z, t)$ is found from Eq (18). The integral $\ln ^{+\infty} f(x, t) d x$ is again equal to 1 .

The amount of activity that enters the cabin can be determined by finding an equivalent inlet area lacd for the cabin. This is

$$
\begin{equation*}
I_{c d}=\frac{\Omega}{v_{x} \rho_{a i r}} \quad\left[m^{2}\right] \tag{39}
\end{equation*}
$$

where Ω is the mass flow rate of air into the cabin from the engine compressor in $k g / s e c, \rho_{\text {air }}$ is the air density at the aircraft altitude in $k /^{3}$, and v_{y} is the aircraft velocity in m/sec.

The total amount of activity $A_{c d}$ in Curies trapped in the cabin is the product of Eq (38) and Eq (39). It is the activity 'scooped out' from a tunnel that extends through the
cloud (Figure 4).
Note that because the mass flow rate of air, Ω, into the cabin is constant, a higher aircraft velocity will resultin a smalier effective infet area, reducing the amont of dust ingested. This is because the cloud is traversed in less time, therefore a smaller volume is ingested at the constant mass flow rate.

Further note that increasing the dimensions of the cloud (either by expansion with time or smearing by wind) in the x direction while aircraft velocity is constant will not changethe amount of dust ingested because the integral $-\infty \int^{+\infty} f(x, t) d x$ is the constant: all of the dust in a cross section throughrcloud will be swept out, regardiess of the particie location in the x direction. However, cloud expansion in the y direction (transuerse to the aircraft's fight path) will reduce the amonnt of dust ingested because the value of $f(y, t)$ in Eq (38) will decrease as σ_{y} increases.

We will assume that all of the dust that enters the cabin is trapped and stays suspended for the remainder of the fight. This assumption is not true, but is used due to the complerities of flow and setting in the cabin. This is a worst case approximation.

The dose rate at the center of a cylindrical cabin is
$\dot{D}=C \frac{A_{c d}}{P V} \frac{\mu_{a}}{\rho} \int_{-H}^{+H} \int_{0}^{R} \int_{0}^{2 \pi} \frac{e^{-\mu_{t}\left(r^{2}+z^{2}\right)^{1 / 2}}}{4 \pi\left(r^{2}+z^{2}\right)} \quad \mathrm{d} \theta \mathrm{drdz}(40)$
where C is actor to convert activity to dose rate and has a value of 2131 [rem-kg/Ci-hr] for 1 MeV gamma rays. A_{cd} is the unit time activity in Curies of the dust trapped inside the cabin
and $P V$ is the pressurized volume of the cabin. The term $A_{c d} / P V$ is the activity density in the cabin. The term μ_{a} / ρ is the tissue absorption cofficient in $m^{2} / k g$, R is the radius of the cabin, H is one half the pseudolength of the cabin and the exponential term allows for selfattenation by the air inside the cabin: μ_{t} is the total attenation coefficient of air in m^{-1}. The cabin air is maintained at a pressurequivalent to an 8000 foot altitude when the aircraft is higher than 8000 feet by the aircraft pressurization system. For this reason, μ_{t} for air at 8000 feet is used.

The integral of $E q(40$) when evaluated results in a constant factor \quad which is dependent on the cabin geometry. This cabin geometry factor K has $u n i t s o f[m]$ and is measure of how 'close' the distributed activity of the dust in the cabin is to a given point in the cabin. In this study, we compute dose to the center of the cabin. The above integral is solved numerically. A program to carry this out is found in Appendix K. Values of K for a variety of aircraft are found in Table VIII.

The unit time dose rate at the center of the cabin is

$$
\begin{equation*}
\dot{D}=C K \frac{A_{c d}}{P V} \frac{\mu_{a}}{\rho} \quad[r e m / h r] \tag{41}
\end{equation*}
$$

The dose is then

$$
\begin{equation*}
D=\dot{D} \int_{t_{a}}^{t_{a}+\Delta t} t^{-1.2} d t \quad[r e m] \tag{42}
\end{equation*}
$$

where \dot{D} is the unit time dose rate, t is the penetration time since burst, and delta t is the time remaining from cloud
penetration to mission completion. Doses for multiple clond encounters can be obtained by summing the doses from each individual encounter. If this is done for multiple clonds in a single mission, care must be taken so that the mission time remaining from penetration time, Δt, is adjusted in each case so that the doses are compated for realistic exposure times, i.e. \quad at equals mission duration minus the time between takeoff and cloud penetration for each cloud encountered during the mission.

The following table was computed using the above equations and the data for each aircraft found in Appendix D. It provides information on dose factors, airspeds, and cabin sizes and airflow rates for a variety of typical aircraft on operational type missions.

TABLE VIII

AIRCRAFT_DOSE_DATA

Aircraft Type	Gamma Transmission Factor $\mathrm{T}_{\boldsymbol{\gamma}}$	$\begin{gathered} \text { Cabin } \\ \text { Geometry } \\ \text { Factor } \\ M \end{gathered}$	$\left\|\begin{array}{c} \text { Velocity } \\ v_{x} \\ M / S \end{array}\right\|$	$\left\|\begin{array}{c} \text { Cabin Air } \\ \text { Mass Flow } \\ \boldsymbol{n} \\ \mathrm{KG} / \mathrm{MIN} \end{array}\right\|$	Cabin Pressurized Volume M^{3}	Cabin Radius M
B-1 B	. 5265	1.395	279.2	17	28.3	1.07
B-52G	.4360	2.035	231.5	22	51.9	1.75
B-5 2 H	-. .4493	2.035	231.5	22	51.9	1.75
E-3	. 5808	2.505	164.7	61.5	356.1	1.79
E-4B	. 5246	4.586	164.7	276	1686	3.28
EC-135	. 4537	2.468	154.2	50	244.2	1.79
KC-135	. 7043	2.459	231.5	50	232.2	1.79

Filters

Exposure to dust in the cabin can be prevented or reduced in several ways. Depressurizing the cabin during cloud transit would
prevent dust entry. Mission requirements may prevent this. Another method is to use a filter to prevent larger particles from entering.

Smaller particles could be allowed to pass through, as the mean residence time for air in the cabin is on the order of 5 mingtes and the small particies would be quickiy finshed out. In this case, the dust in the cabin would contribute to dose only while the aircraft was inside the cloud. For this study, hower, the small particies that pass throgh the filter will remain trapped in the cabin as a worst case for comparison purposes.

It is possible that centrifugal effects in the compressor section of the aircraft engine could reduce or increase the dust density in the cabin airflow prior to filtration. Engines currentiy undergoing testing for dust erosion effects may provide data on this (Ref 14).

This study will model filtration by subividing the naciear clond into to two congraent clouds. One cloud consists only of those particies which are small enough to pass through the filter. The other cloud consists of the remaining larger particles. The activity scooped out of the 'small particle cloud' is assumed to be trapped in the cabin and will be used for cabin dose computations. The activity scooped out of the rarge particle cloud' is trapped in the filter. Sky-shine dose calculations use the summed activity of both clouds.

A filter studied by Rockwell for the B-1 bomber (Ref 15) will trap all particles with a radins greater than 10 microns. Thus a filter transmission factor for all grons greater than this size in Eq (18) would be 0, i.e., none of them enter the cabin.

Particies between 5 and 10 microns in radius are trapped with a 90\% efficiency for a filter transmission factor of 0.1. All particies smaller than microns pass thronghthe filter, for a filter transmission factor of 1.0 .

It should be recognized that if a filter traps enough radioactive dust, it may present a hazad greater than unfiltered air would pose. Care must be taken that the filter is shielded or distant from the aircrem, ground crem, and electronics equipment. If the filtering efficiency of engines and other parts of the cabin air supply system can be quantified, then a filter transmission factor for the entire system can bed.

Any filter has a limit to its capacity. The filter mentioned above will trap about 225 grams of dust before becoming clogged. After the filter is clogged, it must be byassed and unfiltered air allowed into the cabin. The mass trapped in the filter for each cloud encounter can be determined as discussed in the neit chapter.

Dose Results

The output for the baseline case is presented in Table $\begin{gathered}\text {. The }\end{gathered}$ next two tables will be the same, except that the DELFIC particie size distribution is replaced with the NRDL-N61 distribution of rm $=.00039$ micrometers and $\sigma_{r m}=7.24$ (Table XI). The TOR-C distribution of $\mathrm{rm}=50.6$ and $\sigma_{\mathrm{rm}}=\mathbf{1 . 3 6}$ is used for Table XII.

For comparison purposes, the baseline case in this study will be a one megaton burst, fission fraction of 0.5, DELFIC (Defense Land Fallout Information Code) defalt particle size distribution, a cross track wind shear of 1 (km/hr)/km, an hour mission
duration after cloud penetration, and a KC-135 aircraft.
Table $I X$ contains the input parameters for the baseline case.

Table IX

Baseline Case Input Parameters

```
31 Dec 1438
This is a dose report.
CUSTOM SCENARIO: Baseline case - DELFIC and KC-135
WEAPON/TARGET DATA:
Number of weapons ---------------------}
Weapon yield ------------------------ 1000 KT
Fission fraction --------------------- 0.5
Dust fraction --------------------------1/3
The size distribution input file is- DELFIC.RMA
```



```
The soil density is --------------- 2600 KG/M
The aircraft specification file is - KC-135.SPC
Aircraft velocity is --------------- 231.5 M/S
Time from cloud penetration
to end of mission ------------------- }8\mathrm{ HR
Wind shear X (along track) --------- 0 (KM/HR)/KM
Wind shear Y (cross track) --------- 1 (KM/HR)/KM
The output file vill be named ------ A:BASELINE.DOP
```

Tables X and $X I$ show that compared to DELFIC, an NRDL-N61 cloud will canse an increased dose at high altitudes, from 30\% to 80\% more, depending on the time since burst. Concurrently, the NRDL-N61 cloud has from 66% to 30% less dose at low altitudes. These effects are due to the large numbers of small particies in the NRDL-N61 distribution. The smaller particles are carried to higher altitudes and stay $u p$ longer, thereby adding to the activity density at high altitudes and subtracting from it at low altitudes. This can be seen by comparing Figure 7 to Figure 6. The dose is further increased at high altitude because the lower air density provides less attenation.

Table XII shows the results for the TOR-C cloud (composed of relatively large particles) which causes similar doses compared to

DELFIC at eary times, but at lower altitudes. Doses falloff very rapidy after the second hour at all altitudes. The dose at two hours is 30 percent less than DELFIC and at an altitude 4000 meters lower. Theseffects are caused by the rapid fall of the large particles and becanse the large particles start falling from a lower altitude. The aircrem dose is low becanse the cloud has fallen out of the air onto the ground. This can be easily Visualized in Figure 9.

Tables XIII and XIV are for the B-1B in a DELFIC clond, without and with a filter. The dose due to dust in the cabin is completely remored at low altitudes, and at high altitudes where there are particles too small for the filter to trap, the dose is reduced by 80%. As expected, the sky-shine dose does not change.

This study assumes constant gama ray energy of 1 MeV. It would be possible to make the gamma energy a function of time using data derived by Drinkwater (Ref 7), which gives gamma energies from 1.44 MeV at 0.27 hour to 0.5 MeV at 27 hours. A sample calculation, shown in table $X V$, carried out for amma energy of 0.7 MeV results in a shelding cross section increase of 10\%. Combined with the lower gamma energy, dose is reduced about 35\%.

In the baseline case, we took wind shear $S_{x}=0$ and $S_{y}=1$. If the nuclear cloud is stretched by wind shear in the x drection (the direction of penetration), the activity-integral and σ_{y} will not change and the dose will remain the same (see Eq (37)) This is shown in Table XVI, where $S_{x}=10$ and $S_{y}=1$: this represents a long, nariow cloud.

Table XVII shows the results if the aircraft in the last case
penetrates the cloud in the transferse direction. This is accomplished by setting $S_{z}=1$ and $S_{y}=10$, so that the aircraft flies through ahort, wide cloud. Both sky-shine and cabin dust dose are reduced by factor of 5 at one hour and by aftor of 10 at eight hours. Dose is also inversely proportional to velocity, as shown for sky-shine in Eq (37) and for cabin dust in $\mathrm{Eq}(39)$.

Tables XVIII to XX show the doses that can be expected for a B-52G, E-4B, and EC-135 respectively. They penetrate the same DELFIC cloud that the baseline KC-135 in Table X used. The sky-shine dose varies with the gama transmission factor, aircraft velocity, and the transferse size of the cloud. The cabin dust dose varies with velocity, mass flow rate of air into the cabin, the cabin geometry factor k, and the transierse size of the cloud.

Baseline Case - DELFIC Cloud and KC-135

31 Dec 1438 CUSTOM SCENARIO: Base1ine - DELFIC and KC-135
time (hr) $=2$ deltat (hr) $=.0967423$ Gairborne $=81$ sigmax $=4865.07 \mathrm{M}$
sigmay $=6148.72 \mathrm{M} \quad 3$ sigmay cloud diameter $=36892.3 \mathrm{M}$

$\underset{M}{\text { Altitude }}$	Cabin Dust REM	Sky Shine REM	Total Dose REM	Prominent Particle microns radius
12000	1.44	1.73	3.18	22.4
10000	. 702	. 842	1.54	36.2
8000	. 332	. 399	. 731	48.6
6000	. 196	. 236	. 432	60.1
4000	. 133	. 160	. 294	74.7
2000	. 0934	112	205	89.5

31 Dec 1438 CUSTOM SCENARIO: Baseline - DELFIC and KC-135
time (hr) $=4$ deltat (hr) =. 166667 gairborne $=69$ sigmax $=5627.78 \mathrm{M}$
sigmay $=9500.64 \mathrm{M} \quad 3$ sigmay cloud diameter $=57003.8 \mathrm{M}$

$\begin{gathered} \text { Altitude } \\ M \end{gathered}$	$\begin{aligned} & \text { Cabin Dust } \\ & \text { REM } \end{aligned}$	Sky Shine REM	Total Dose REM	Prominent Partic1e microns radius
12000	. 482	. 404	. 886	15.4
10000	. 240	. 200	. 441	24.5
8000	. 116	. 097	. 214	31.8
6000	. 069	. 058	. 127	39.4
4000	. 046	. 038	. 085	46.6
2000	. 033	. 028	. 061	52.9

31 Dec 1438 CUSTOM SCENARIO: Baseline - DELFIC and KC-135
time (hr) $=8$ deltat (hr) $=.363636$ \%airborne $=57$ sigmax $=5627.78 \mathrm{M}$
sigmay $=16435.6 \mathrm{M} \quad 3$ sigmay cloud diameter $=98613.5 \mathrm{M}$

Altitude Cabin Dust Sky Shine Total Dose Prominent Particle

M	REM
12000	.130
10000	.067
8000	.033
6000	.019
4000	.013
2000	9.68 E-03

REM	REM
.083	.213
.042	.109
.021	.054
.012	.032
8.58	$\mathrm{E}-03$
6.17	.022

microns radius 11.2
17.0
22.4
26.8
30.5
34.7

Table XI

NRDL-N61 C1oud and KC-135

30 Dec 1300 CUSTOM SCENARIO: NRDL-N61 and KC-135
time (hr) $=4$ deltat (hr) $=.386969$ \%airborne $=90$ sigmax $=5551.88 \mathrm{M}$
sigmay $=9443.7 \mathrm{M} \quad 3$ sigmay clond diameter $=56662.2 \mathrm{M}$
Altitude Cabin Dust Sky Shine Total Dose Prominent Particle

M		REM	REM	REM	microns radius
12000		. 800	. 669	1.46	16.3
10000		. 270	. 226	. 496	25.8
8000	-	. 086	. 072	. 158	33.4
6000		. 041	. 034	. 075	41.3
4000		. 025	. 021	. 046	48.2
2000		. 016	. 014	. 031	57.0

30 Dec 1300 CUSTOM SCENARIO: NRDL-N61 and KC-135
time $(\mathrm{hr})=8$ de1tat $(\mathrm{hr})=.386969$ \%airborne $=84$ sigmax $=5551.88 \mathrm{M}$
sigmay $=16402 \mathrm{M} \quad 3$ sigmay cloud diameter $=98411.9 \mathrm{M}$

| Altitude | Cabin Dust | Sky Shine | Total Dose | Prominent Particle |
| :---: | :---: | :---: | :---: | :---: | :---: |
| M | REM | REM | REM | microns radius |
| 12000 | .244 | .155 | .399 | 11.2 |
| 10000 | .086 | .055 | .141 | 18.2 |
| 8000 | .029 | .018 | .047 | 22.9 |
| 6000 | .014 | $9.12 \mathrm{E}-03$ | .023 | 27.5 |
| 4000 | $8.94 \mathrm{E}-03$ | $5.70 \mathrm{E}-03$ | .014 | 31.3 |
| 2000 | $5.99 \mathrm{E}-03$ | .003 | $9.81 \mathrm{E}-03$ | 35.8 |

TOR-C Cloud and KC-135

Table XIII

DELFIC Cloud and B-1B

FITHOUT CABIN AIR FILTER

WITH CABIN AIR FILTER

**
26 Feb 0041 CUSTOM SCENARIO: DELFIC cloud: KC-135: 0.7 MeV energy β xsec time (hr) $=2$ de1tat (hr) $=.0967423$ \%airborne $=81$ sigmax $=4865.07 \mathrm{M}$ sigmay $=6133.43 \mathrm{M} \quad 3$ sigmay cloud diameter $=36800.6 \mathrm{M}$

A1titude	Cabin Dust	Sky Shine	Total Dose	Prominent Particle	
M	REM	REM	REM	microns radius	
12000	1.06	1.06	2.12	22.4	
10000	.517	.515	1.03	36.2	
8000	.245	.244	.489	48.6	
6000	.145	.144	.289	60.1	
4000	.098	.098	.196	74.7	
2000	.068	.068	.137	89.5	

**
26 Feb 0041 CUSTOM SCENARIO: DELFIC cloud: KC-135: 0.7 MeV energy β xsec time (hr) $=4$ deltat (hr) $=.166667$ \%airborne $=69$ sigmax $=5627.78 \mathrm{M}$ sigmay $=9479.4 \mathrm{M} \quad 3$ sigmay cloud diameter $=56876.4 \mathrm{M}$ Altitude Cabin Dust Sky Shine Total Dose Prominent Particle

M	REM	REM
12000	.355	.247
10000	.176	.122
8000	.086	.059
6000	.051	.035
4000	.034	.023
2000	.024	.017

REM microns radius
.60315 .4

Table XVI

DELFIC C1ond and $\mathrm{KC}-135: S_{x}=10, S=1$

1 March 0503 CUSTOM SCENARIO: Base1	CUSTOM SCENARIO: Baseline + Xshear = 10: Y shear = 1			
time (hr) $=1$ deltat (hr) = . 0967423 \%airborne $=90$ sigmax $=18319.7 \mathrm{M}$				
sigmay $=4343.43 \mathrm{M} \quad 3$ sigmay cloud diameter $=26060.6 \mathrm{M}$				
Altitude	Cabin Dast	Sky Shine	Total dose	Promin
M	REM	REM	REM	micro
12000	3.62	6.72	10.3	31.8
10000	1.71	3.19	4.90	55.1
8000	. 790	1.46	2.25	78.1
6000	. 440	. 817	1.25	103.
4000	. 275	. 511	. 786	126.
2000	. 180	. 335	. 515	157.
**				
1 March 0503 CDSTOM SCENARIO: Base1			+ Xshear $=$	Y she
time (hr) $=2$			irborne =	igmax
sigmay $=6133.43 \mathrm{M}$			igmay cloud	ter $=$
Altitude	Cabin Dust	Sky Shine	Total dose	Prominent Particle
M	REM	REM	REM	micro
12000	1.44	1.73	3.18	22.4
10000	. 702	. 842	1.54	36.2
8000	. 332	. 399	. 731	48.6
6000	. 196	. 236	. 432	60.1
4000	. 133	. 160	. 294	74.7
2000	. 093	. 112	. 205	89.5
**				
1 March 0503 CUSTOM SCENARIO: Basel			+ Xshear $=$	Y she
time (hr) $=4$ de			irborne $=69$	gmax
sigmay $=9479.4 \mathrm{M}$			may cloud	er =
Altitude	Cabin Dust Sky Shin		Total dose	Prominent Particle
M	REM	REM	REM	micro
12000	. 4829	. 4040	. 886	15.4
10000	. 2402	. 2009	. 441	24.5
8000	. 1169	. 0977	. 214	31.8
6000	. 0693	. 0580	. 127	39.4
4000	. 0464	. 0388	. 085	46.6
2000	. 0335	. 0280	. 061	52.9
**				
1 March 0503 CUSTOM SCENARIO:			+ Xshear $=$	Y she
time (hr) $=8$ deltat (hr) $=.363636$			irborne = 57	igmax $=$
sigmay $=16403.4 \mathrm{M}$			igmay cloud	eter $=$
A1titude	Cabin Dust Sky Shine		Total dose	Prominent Particle
M	REM	REM	REM	micro
12000	.1305	. 083	. 2137	11.2
10000	. 0670	. 042	. 1097	17.0
8000	. 0331	. 021	. 0543	22.4
6000	. 0197	. 012	. 0323	26.8
4000	. 0134	8.58 E-03	. 0220	30.5
2000	$9.687 \mathrm{E}-03$	$6.17 \mathrm{E}-03$. 0158	34.7

Table XVII

DELFIC Cloud and $K C-135: S_{\underline{x}}=1, S=10$

DELFIC C1oud and B-52G

DELFIC Cloud and E-4B

12 JAN 1756 CUSTOM SCENARIO: Baseline + E-4B				
time (hr) = 8 deltat (hr) $=.363636$ gairborne $=57$ sigmax $=5627.78$				
sigmay $=16435.6 \mathrm{M} \quad 3 \mathrm{sigmay}$ cloud diameter $=98613.5 \mathrm{M}$				
Altitude	Cabin Dust	Sky Shine	Total Dose	Prominent Particle
M	REM	REM	REM	microns radius
12000	. 267	. 087	. 354	11.2
10000	. 137	. 044	. 182	17.0
8000	. 067	. 022	. 090	22.4
6000	. 040	. 013	. 054	26.8
4000	. 027	$8.99 \mathrm{E}-03$. 037	30.5
2000	. 019	$6.46 \mathrm{E}-03$. 026	34.7

DELFIC C1oud and EC-135

IV. Mass Analvsis

Backgrongd

There are two reasons why it is important to determine the mass of dust ingested by an aircraft. The first is that any filter designed to prevent radioactive dust from entering the cabin will eventually clog when exposed to enough dust. When this point is reached, the filter will be bypassed and nfiltered air will enter the cabin.

The second reason is that aircraftengines may be degraded or disabled by excessive amonnts of dust. Recent experience with volcanic ash clouds (Ref 13) shows that erosion of turbine blades and glass-1ike deposits of melted dust may drastically increase fuel consumption or cause engine failure.

Theo포

Determining the mass of dust ingested by the cabin, an air filter, or the engines in an aircraft, is identical in principle to the method described in Chapters II and III. The only changes needed are to substitute mass and mass densities for unit time activities and activity densities so that Eq (14) and Eq (18) are replaced by

$$
\begin{equation*}
M, O(x, y, z, t)=\int_{0}^{+\infty} M_{r} \cdots(x, y, z, r, t) d r \quad\left[K G / m^{3}\right] \tag{43}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{+\infty} M_{r} \cdot(z, r, t) d r=\sum_{i=1}^{100} M^{i} f^{i}(z, t) \quad[K G / m] \tag{44}
\end{equation*}
$$

Where the equal activity-size particle groups are replaced by equal mass-size particle groups. The mass density of the cloud is
defined as mass of rock per unit volume of air with units of $k g / m^{3}$. Figures 10 , 11 and 12 show mass density versus altitude in the cloud in the same manner that Figures 6, 7 , and 8 depicted activity density versus altitude. Note that the mass density decreases at mach slower rate than the activity density. This is becanse the radioactivity is decaying with time as well as settiing out.

The total amount of mass initially lofted in the nuclear clond depends on the target material, the heightof burst, and the yield. A common rule of thamb is $1 / 3$ ton of dust per ton of yield. This stady found a least-squares fit polynomial to DELFIC defant Nevada soil predictions for mass of dust lofted: this relationship is

$$
\begin{aligned}
\mathrm{DF}= & .204731-.02405321 n Y+.00139148(\ln Y)^{2} \\
& -4.88467 \times 10^{-5}(1 n Y)^{3}+8.62805 \times 10^{-7}(1 n Y)^{4}(45)
\end{aligned}
$$

Where Y is y ield in kilotons and $D F$ is dust fraction, the ratio tons dust/tons yield so that total dust mass in kilotons equals the dust fraction times the yield in kilotons. DELFIC predicts a dust fraction from .1 to .2 depending on yield, for the defanit Nevada soil surface burst. This study willuse adust fraction of $1 / 3$ because dust fractions for other soils were not found and because it is defense conservative.
3. It is also possible to determine the mass fraction in each activity-size group or the activity fraction in each mass size group so that the calculations need be done only once. DELFIC operates in this manner. This is not done here.

Figure 10.- BASELINE - DELFIC MASS - ONE MEGATON

figure 11 - nrol-ngi cloud mass - one megaton

Figure 12. - TOR-C Mfigs - ONE MEGATOA

Filter And Engine Ingestion

The mass of dust ingested into the cabin or trapped in a filter depends on the mas flow rate of air into the cabin: As before, the effective inlet area is

$$
\begin{equation*}
I A_{c d}=\frac{\Omega}{v_{x} \rho_{a i x}} \quad\left[m^{2}\right] \tag{39}
\end{equation*}
$$

Where Ω is the mass flow rate. The mass of dust is the product of the above equation and the mass integral of the airborne dust. The dust mass integral is found by the same method as the 'activity-integral' in Eq (38), where the activity densities are replaced by mass densities so that

$$
\begin{equation*}
M^{\prime \prime}(y, z, t)=f(y, t) M^{\prime}(z, t) \int_{-\infty}^{+\infty} f(x, t) d x \quad\left[k g / m^{2}\right] \tag{46}
\end{equation*}
$$

where $M^{\prime}(z, t)$ is given by Eq (44).
Engines may be affected both by dust density and by the total mass of dust ingested. The peak dust density is found in the center of the cloud in the same manner that activity densities were found in Chapters II and III. The amount of dust passing through an engine is found by subsituting the mass fow of air into the engine for the mass flow of air to the cabin. Note that the physical inlet area of the engine is not used. If the dust entering the core section of a turbofan engine is desired, the total mass flow of the engine must be divided by the byass ratio. Data for the engines used for the aircraft in this study are found in the following table.

TABLE XXI

ENGINE DATA

Aircraft
Type

Engine
Type

Mass
Flow KG/S

Bypass
Ratio

B-1B	F-101-GE-102	161	2.3
B-52G	J57-P-43FB	83	0
B-52H	TF-33-P-3	204	1.4
E-3	TF-33-P	204	1.4
E-4B	CF-6-50E2	729	4.3

EC-135 J57-P- WB 830
$\begin{array}{lllll}\mathrm{KC}-135 & \mathrm{~J} 57-\mathrm{P}-\quad \mathrm{WB} & 83 & 0\end{array}$

The above flow rates are for each engine at unaumented military rated thrast and'standard (sea level) conditions.

Mass flow scales directly as thrist to good approximation. If the percent thrist used for cruise speed at the penetration altitude is known, this percentage can be multiplied by the mass flow of the engine at sea level. This will result in more realistic (and lower) mass flow through the engine. This refinement was not inciuded in this study to simplify the treatment of the many different altitudes and aircraft examined: the percentage will vary for both these parameters.

Mass Results

Tables XXII, XXIII, and XXIV give the results for dast ingestion using the equal mass groups for the same DELFIC, NRDL-N61, and TOR-C clouds and initial conditions ased in

Chapter III.
The amount of dust trapped in the cabin in Table XXII is much less than the capacity of the filter mentioned in Chapter III. It would appear that there is little danger of cloging the filter unless a large multiple burst cloud is encountered or a single cloud is entered many times.

Althongh no reliable quantitative data could be found on engine dust tolerance, the amont of dust ingested in these cases appears to be minimal. Earlier times andmultiburst cioud results are given in Appendices G and I.

DELFIC Dust Cloud and KC-135

**
13 Jan 0959 CUSTOM SCENARIO: Baseline DELFIC dust, KC-135,Dust Fraction=1/3 time (hr) $=2$ deltat (hr) $=.0967423$ \%airborne $=73$ sigmax $=4924.79 \mathrm{M}$ sigmay $=6198.22 \mathrm{M} \quad 3$ sigmay cloud diameter $=37189.3 \mathrm{M}$ Prominent Altitude Cloud Dens Filtered Dust Cabin Dast Engine Dust Particle

| M | $\mathrm{mg} / \mathrm{M}^{\wedge}$ | Kg | Kg | Kg | microns r |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 12000 | 101. | 0 | .014 | 1.44 | 21.7 |
| 10000 | 83.4 | 0 | $8.96 \mathrm{E}-03$ | .894 | 36.0 |
| 8000 | 60.6 | 0 | $5.11 \mathrm{E}-03$ | .510 | 48.3 |
| 6000 | 48.9 | 0 | $3.28 \mathrm{E}-03$ | .328 | 61.7 |
| 4000 | 42.6 | 0 | $2.30 \mathrm{E}-03$ | .230 | 73.5 |
| 2000 | 37.4 | 0 | $1.65 \mathrm{E}-03$ | .164 | .87 .6 |

**
13 Jan 0959 CUSTOM SCENARIO: Baseline DELFIC dust, KC-135,Dust Fraction=1/3 time $(\mathrm{hr})=4$ deltat $(\mathrm{hr})=.166667$ Sairborne $=57$ sigmax $=5705.15 \mathrm{M}$ sigmay $=9544.24 \mathrm{M} \quad 3$ sigmay cloud diameter $=57265.5 \mathrm{M}$ Prominent

$\begin{gathered} \text { Altitude } \\ M \end{gathered}$	Cloud Dens $\mathrm{mg} / \mathrm{M}^{\wedge} 3$	Filtered Dust $\mathbf{K g}$	$\text { Cabin Dust }_{K_{q}}$	$\underset{K g}{\text { Engine Dust }}$	$\begin{aligned} & \text { Particle } \\ & \text { microns } \end{aligned}$
12000	41.6	0	. 006	. 684	15.9
10000	35.4	0	4.41 E-03	. 440	24.9
8000	26.7	0	. 002	. 261	32.0
6000	21.8	0	. 001	. 169	38.8
4000	18.9	0	1.19 E-03	. 118	46.6
2000	17.3	0	8.85 E-04	. 088	53.7

TABLE XXIII

NRDL-N61 Dast C1oud and KC-135

11 Jan 2207 CUSTOM SCENARIO: NRDL-N61 Dust C1oud, KC-135,Dust Fraction=1/3 time $(\mathrm{hr})=1$ deltat $(\mathrm{hr})=.0967423$ \%airborne $=81$ sigmax $=3973.99 \mathrm{M}$ sigmay $=4360.21 \mathrm{M} \quad 3$ sigmay cloud diameter $=26161.3 \mathrm{M}$ Prominent

Altitude M	$\begin{gathered} \text { Cloud Dens } \\ \text { mg } / M^{\wedge} 3 \end{gathered}$	Filtered Dust $\mathbf{K g}$	$\begin{aligned} & \text { Cabin Dust } \\ & \mathbf{K}_{g} \end{aligned}$	Engine Dust Kg	Particle microns r
12000	254.	0	. 029	2.91	30.9
10000	158.	0	. 013	1.36	53.6
8000	93.8	0	$6.39 \mathrm{E}-03$. 638	76.1
6000	68.0	0	$3.69 \mathrm{E}-03$. 368	103.
4000	55.0	0	$2.40 \mathrm{E}-03$. 239	129.
2000	46.2	0	$1.64 \mathrm{E}-03$. 164	153.

11 Jan 2207 CUSTOM SCENARIO: NRDL-N61 Dust C1ond, KC-135, Dust Fraction=1/3
time $(h r)=2$ deltat (hr) $=.0967423$ \%airborne $=71$ sigmax $=4891.03 \mathrm{M}$ sigmay $=6153.33 \mathrm{M} \quad 3$ sigmay clond diameter $=36920 \mathrm{M} \quad$ Prominent Altitude Cloud Dens Filtered Dust Cabin Dust Engine Dust Particle

M	mg/		$\mathbf{K g}$	K		Kg	microns r
12000	122.	0		. 017		1.73	22.5
10000	77.3	0		8.25	E-03	. 823	35.9
8000	46.3	0		3.88	E-03	. 387	48.5
6000	34.8	0		. 002		. 232	62.2
4000	29.9	0		1.60	E-03	. 160	76.1
2000	26.1	0		1.14	E-03	. 114	88.7

11 Jan 2207 CUSTOM SCENARIO: NRDL-N61 Dust Cloud, KC-135,Dust Fraction=1/3 time $(\mathrm{hr})=4$ deltat $(\mathrm{hr})=.181818$ \%airborne $=60$ sigmax $=5661.43 \mathrm{M}$ sigmay $=9493.12 \mathrm{M} \quad 3$ sigmay cloud diameter $=56958.7 \mathrm{M}$ Prominent Altitude Cloud Dens Filtered Dust Cabin Dast Engine Dust Particle

| M | $\mathrm{mg} / \mathrm{M}^{\wedge} 3$ | Kg | Kg | Kg | microns r |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 12000 | 57.3 | 0 | $9.39 \mathrm{E}-03$ | .9371 | 16.1 |
| 10000 | 36.7 | 0 | $4.53 \mathrm{E}-03$ | .4526 | 25.1 |
| 8000 | 22.3 | 0 | $2.17 \mathrm{E}-03$ | .2167 | 32.5 |
| 6000 | 16.6 | 0 | $1.28 \mathrm{E}-03$ | .1285 | 39.7 |
| 4000 | 13.9 | 0 | $8.67 \mathrm{E}-04$ | .0865 | 46.1 |
| 2000 | 12.4 | 0 | $6.29 \mathrm{E}-04$ | .0628 | 53.6 |

11 Jan 2207 CUSTOM SCENARIO: NRDL-N61 Dust C1oud,KC-135,Dust Fraction=1/3
time $(\mathrm{hr})=8$ deltat $(\mathrm{hr})=.363636$ \%airborne $=50$ sigmax $=5661.43 \mathrm{M}$
sigmay $=16412.3 \mathrm{M} \quad 3$ sigmay cloud diameter $=98474 \mathrm{M} \quad$ Prominent
Altitude Cloud Dens Filtered Dust Cabin Dust Engine Dust Particle

M	$\mathrm{mg} / \mathrm{M}^{*} 3$	Kg	Kg	Kg	microns r
12000	27.5	0	$4.49 \mathrm{E}-03$. 448	11.1
10000	18.0	0	2.23 E-03	. 222	17.1
8000	11.1	0	$1.08 \mathrm{E}-03$. 107	22.5
6000	8.29	0	$6.41 \mathrm{E}-04$. 0639	26.4
4000	7.02	0	$4.37 \mathrm{E}-04$. 0436	30.9
2000	6.22	0	$3.15 \mathrm{E}-04$. 0314	34.2

TABLE XXIV

TOR-C Dust C1oud and KC-135

**

**

12 JAN 0107 CUSTOM SCENARIO: TOR-C Dust Cloud, KC-135,Dust Fraction $=1 / 3$ time $(\mathrm{hr})=8$ deltat $(\mathrm{hr})=.386969$ \%airborne $=20$ sigmax $=5713.77 \mathrm{M}$ sigmay $=16429.7 \mathrm{M} \quad 3$ sigmay cloud diameter $=98578.3 \mathrm{M}$ Prominent

$\begin{aligned} & \text { A1titude } \\ & M \end{aligned}$	Cloud Dens $\mathrm{mg} / \mathrm{M}^{\star} 3$	Filtered Kg	$\begin{gathered} \text { Cabin Dust } \\ \mathbf{K}_{\mathrm{g}} \end{gathered}$	$\underset{\mathbf{K}_{\mathbf{g}}}{\text { Engine Dust }}$	```Marticle```
12000	0	0	0	0	30.4
10000	. 018	0	2.24 E-06	$2.24 \mathrm{E}-04$	30.4
8000	. 223	0	2.18 E-05	2.18 E-03	30.4
6000	1.10	0	$8.57 \mathrm{E}-05$. 008	30.4
4000	2.83	0	$1.78 \mathrm{E}-04$. 017	30.4
2000	5.41	0	$2.76 \mathrm{E}-04$. 027	36.7

V. Conclusions and Recommendations

Conclnsions

This study has extended the calculation of aircrew dose to a wide variety of strategic aircraft. An improved model of the aircraft cabin was developed to allow better estimates of shielding from external gamma rays and dose rates for internal gamma rays. A 22% increase in the shielding factor and a 16% decrease in the cabin geometry factor reduce the aircrem dose due to sky-shine and cabin dust by proportionate amounts, compared to K1ing's KC-135 model.

Additions to the nuclear clond model as sugested by Bridgman and Bigelow (Ref 1) have allowed the effects of different particie size distributions to be considered. The differences are significant. Comparing doses at the maximum dose altitudes due to clouds composed primarily of small (NRDL-N61) and large (TOR-C) particles, the NRDL-N61 cloud caused 30\% more dose to the aircrew at one hour for both sky-shine and cabin dust. After 4 hours, the differences in dose reached an order of magitude: the total dose is small, howeve due to decay of activity with time.

A simple extension to the cloud model allows dust densities and the mass of dust ingested by an engine or ailter to be found. Differences in the dust densities between the NRDL-N61 and TOR-C clouds were reversed compared to the doses at early times. At one hour, the TOR-C cloud had a 50% greater dust density. The rapid fallout of the larger particles in the TOR-C cloud reduces the cloud density mach more rapidy, however, so that after 4 hours the densities are similar and after 8 hours only 20% of the
original clond was still airborne. Fifty percent of the NRDL-N61 clond was still aloft at 8 hours.

Addition of $a \operatorname{filter}$ to the cabin air supply made major difference to the dose due to the dust trapped in the cabin and demonstrated that filters need not stop sub-micron particles to be effective. for an 8 hour mission, a filter stoping particies larger than 20 microns trapped 80% of the cabin dust dose at 37,000 feet for 1 hour after the burst, and trapped all of it below 20,000 feet at any time. Since the smaller particles that pass through the filter are less likely to settle out in the cabin, the filter should be even more effective than these calculations showed.

Comparison of air density with dust densities likely to be found in a megaton size nuclear cloud indicates that self-shielding of the dust is negligible. The dust density is only 0.3\% of the air density, and gamma cross sections are similar. Thus the attenuation due to air is much larger than any attenuation due to dust.

Splitting the single wind shear into two components allowed the aircraft to penetrate the late time cloud in any direction. After 1 hour of a typical wind $\left(S_{t}=10.05\right)$, penetrating the cloud along the major axis will result in 5 times as mach dose as penetrating along the minor axis. After 8 hours, there will be a factor of 10 difference in dose. The increase in dose is due equally to sky-shine and cabin dust dose. Aircraft required to orbit an area downind of a target area could follow a long, narrow racetrack at right angles to the prevailing wind, thereby minimizing dose.

Recommendations

There are six recommendations to be made. First, the constant gamma ray energy assumpion of 1 MeV conld be replaced by a time dependent energy. This wonld involve making all of the absorption and attenation coefficients variables as well. Doses would be increased at early times and decreased at later times.

Second, the airflow through the cabin could be modeled to determine what size particles could be expected to stay suspended long enough to be removed from the cabin by the ontgoing air. Patrick (Ref 20) siggests a method for doing this.

Third, equipment and structure inside the cabin conld be modeled to account for shielding from the dust traped in the cabin.

Fourth, aircraft engines conld be tested to determine whether the dust densities predicted to exist in a noclear cloud would degrade engine operation and thos be a concern for determining survivability of the aircraft.

Fifth, a more realistic wind model could be developed.
Last, an algorithm to adjust engine thrist (thas mass flow and engine dust ingestion) with altitude and airspeed conid be added so that a more realistic engine mass ingestion could be fòn ind.

Bibliography

1. Bridgman, C.J. and W.S. Bigelow. "A New Fallout Prediction Model," Health Physics, 42 (2): 205-218 (August 1982).
2. Bridgman, C.J. and B.E. Hickman. Aircraft Penetration of Radioactive Clouds. School of Engineering, Air Force Institute of Technology, Wright-Patterson AFB OH, 1982.
3. Bridgman, C.J. Unpublished paper. School of Engineering, Air Force Institute of Technology, Wright-Patterson AFB OH, 1982.
4. Brodsky, A.B. Editor CRC Handbook of Radiation Measurement and Protection. Volume I: Physical Science and Engineering Data. CRC Press, Inc. West Palm Beach FL.
5. Crandley, J.F. A Multiburst Fallout Model for Operational Type Studies. MS Thesis, Wright-Patterson AFB OH: Air Force Institute of Technology, March 1981.
6. Davies, C.N. "Definitive Equations for the Fluid Resistance of Spheres," The Proceedings of the Physical Society, London, 57: 259-270 (July 1945) .
7. Drinkwater, R.B. Gamma Radiation from Fission Products. MS Thesis, Wright-Patterson $A F B$ OH: Air Force Institute of Technology, March 1974.
8. Glasstone, S. and P.J. Dolan. The Effects of Nuclear Weapons (3rd Ed). Washington DC: U.S. Government Printing Office, 1977.
9. Gogolin, J. DELFIC (AFIT Version) Operator's Manual. Wright-Patterson $A F B$ OH: Air Force Institute of Technology, 15 June 1984.
10. Hickman, B.E. Aircrew Ionizing Doses from Radioactive Dust Cloud Generated by Nuclear Burst. MS Thesis, Wright-Patterson AFB OH: Air Force Institute of Technology, March 1982.
11. Hopkins, A.T. A Two Step Method To Treat Variable Winds In Fallout Smearing Codes. MS Thesis, Wright-Patterson AFB OH: Air Force Institute of Technology, March 1982.
12. Klement, A.W. Jr. Radioactive Fallout from Nuclear Weapons Tests. Proceedings of the Second Conference, Germantown $M D$, 3-6 November, 1964.
13. O'Lone, R.G. "Volcanic Eruption Disrupts Air Traffic," Aviation Week and Space Technology, p. 18, 26 May 1980
14. Personal conversation, Col. R. Justice, US Air Force Strategic Air Command, Offut AFB, NE. 31 October, 1984.
15. Powell, W.C. III. "Radiation Threat From Nuclear Dust In The ECS Particle Filter," TFD-82-890 Rockwell International Los Angeles, CA 16 December, 82.
16. Kling, T.R. Airborne Penetration of Radioactive Clouds. MS Thesis, Wright-Patterson AFB OH: Air Force Institute of Technology, March 1983.
17. McBahan, J.T., et al. Sensitivity of Fallout Predictions to Initial Conditions and Model Assumptions. Science Applications, Inc., McLean VA, 15 June 1974 (AD A002 464).
18. McDonald, J.E. "An Aid to Computation of Terminal Fall Velocities of Spheres," Journal of Meteorology, 17: 463-465 (August 1960).
19. McMaster, N. et al. Compilation of X-Ray Cross Sections UCRL-50174 Sec. II Rev. I. Lawrence Radiation Laboratory, Livermore CA 1969.
20. Patrick, R.P., et al. Aircraft Penetration of Clouds Generated by Nuclear Bursts. Kirtland AFB NM: Air Force Weapons Laboratory, 1973 (AFWL-TR-73-82).
21. Patrick, R.P., et al. Cockpit Air Filtration Requirements for the $B-1$ in a Nuclear Dust Environment. Kirtland AFB NM: Air Force Weapons Laboratory, 1973 (AFWL-TR-73-83).
22. Patrick, R.P. "Potential Crew Hazards Due to Radioactive Cloud Penetrations," Aviation, Space and Environmental Medicine, 46 (3): 281-289 (March 1975).
23. Patrick, R.P. and G.D. Arnett. Aircraft Ionizing Doses and Dose Rates from Radioactive Clouds and Fallout. Rirtland AFB NM: Air Force Weapons Laboratory, 1976 (AFWL-TR-75-214).
24. Polan, M. An Analysis of the Fallout Prediction Models Presented at the UNSRDL-DASA Fallout Symposium of September 1962, - Vol. 1. Analysis, Comparison and Classification of Models, UNSRDL-TRC-68, U.S. Naval Radiological Defense Laboratory, San Francisco CA 94135, 8 September 1962.
25. Pugh, G.E. and R.J. Galiano. An Analytical Model of Close-In Deposition of Fallout for Use in Operational Type Studies. WSEG Research Memorandum No. 10 , Weapon Systems Evaluation Group, The Pentagon, Washington DC, 15 October 1959 (AD 261 752).
26. Routanen, N.H. An Improvement to the WSEG Fallout Model Low Yield Prediction Capability. MS Thesis, Wright-Patterson AFB OH: Air Force Institute of Technology, December 1978.
27. U.S. Standard Atmosphere, 1976. NOAA. US Government Printing Office, Washington DC, 1976.
28. Capasco, N.S., et al, Radioactive Particle Studies Inside an Aircraft, WT-717, US Army Chemical and Radiological Laboratories, February 1956.
29. Ort, F.G, and M.J. Schumchyk, Evaluation of a Filtration System for Pressurized Aircraft, णS Army Chemical and Radiological Laboratories, November 1952.

APPENDIX A

DELFIC Data
This Appendix contains data and polynomials least-squares fit to data predicted by DELFIC for an initial nuclear cloud. Only data that appeared to be potentially useful for this studywere extracted and reduced. Do not consider this study or this Appendix to be a complete summary of DELFIC. The raw data in this Appendix represents less than 1% of all data in a typical DELFIC printout. The term "DELFIC default" refers not only to the particle size distribution used (see Chapter II), but to the winds, fission fraction of the weapon, type of soil, and other variables. See Chapter II for more information ${ }^{\circ n}$ DELFIC. See Gogolin (Ref 9) for further details and information on how to run DELFIC.

The modules of interest for this study are Fireball, Cloud Rise, Interface, and Diffusive Transport. The data from them are presented below in no particular order. All times are in seconds, allalitudes are in meters, all masses are in kilograms, all particle diameters are in microns. Note that DELFIC assigns the smallest group number to the largest size group. The programs in this study use the opposite convention. Also note that this study refers to particle size in terms of radius. DELFIC refers to particle sizes by diameter.

The data presented here are for the:

1. Altitudes of the top and bottom, and the thickness of each disc for every ten particle size groups at vertical stabilization time.
2. Time since burst and radius of the cloud at vertical stabilization.
3. Time since burst and radius of the cloud at horizontal stabilization.
4. Time of solidification of the surface material evaporated in the fireball, and mass of dust airborne at solidification time.

Al. Particle Size versus Altitude at vertical stabilization time
DELFIC divides a particle size distribution into 100 equal mass-size groups. Each group is modeled as a disc, and each disc is subdivided into 20 wafers. Among other things, DELFIC prints the altitude of the top and bottom of each wafer for the initial cloud at vertical stabilization time. Each wafer and each disc may overlap adjoining wafers or discs. This data is printed at the beginning of the Diffusive Transport module.

DELFIC predicts the same altitude for a given size particle for all of the particle size distributions tested; DELFIC default, NRDL-N61, TTAPS, and TOR-C (Ref 3) (see Table I).

To limit the amount of data to be handled, altitude information was extracted for every tenth particle size group rather than for all 100 groups. The data extracted from DELFIC follows. BB refers to the altitude of the bottom of the lowest wafer in a particle size group. TT refers to the altitude of the top of the highest wafer in a particle size group. DeltaZ is the difference of these altitudes computed by this study.

PRIMARY DATA - from DELFIC default fitches and printout

initial cloud height data
**

****************x**x**
10, kt 20 Oct 84 Delfic default $\mathrm{Rm}=.407$ sigma $=4$ silica soil

Delfic group	diameter	BB	TT	DeltaZ
10	799.84	0	2583	0
20	427.59	1663	4269	2606
30	273.97	2721	5199	2478
40	187.75	3357	5747	2390
50	132.13	3785	6095	2310
60	93.105	4062	6334	2272
70	64.063	4272	6494	2222
80	41.447	4400	6595	2195
90	22.824	4474	6652	2178
100	3.6513	4505	6677	2172

100, kt 20 Oct 84 Delfic default $\mathrm{Rm}=.407$ sigma $=4$ silica soil

Delfic group	diameter	BB	TT	DeltaZ
10	799.84	1015	5676	4661
20	427.59	3755	8384	4629
30	273.97	5139	9786	4647
40	187.75	5980	10600	4620
50	132.13	6543	11110	4567
60	93.105	6921	11470	4549
70	64.063	7195	11700	4505
80	41.447	7365	11840	4475
90	22.824	7470	11930	4460
100	3.6513	7505	11960	4455

1000, kt 20	Oct 84 De 1	defaul	sigma	ica soil
Delfic group	diameter	BB	TT	DeltaZ
10	799.84	2269	8646	6377
20	427.59	5653	12460	6807
30	273.97	7412	14980	7568
40	187.75	8497	16190	7693
50	132.13	9221	16960	7739
60	93.105	9725	17480	7755
70	64.063	10070	17800	7730
80	41.447	10300	18000	7700
90	22.824	10470	18150	7680
100	3.6513	10470	18150	7680

15000, kt	20 Oct 84 Delfic	defaul	07 sig	lica so
Delfic group	diameter	BB	TT	Deltaz
10	799.84	8187	19020	10833
20	427.59	12530	28610	16080
30	273.97	14900	32620	17720
40	187.75	16360	34830	18470
50	132.13	17350	36070	18720
60	93.105	17980	36790	18810
70	64.063	18430	37210	18780
80	41.447	18670	37450	18780
90	22.824	18810	37610	18800
100	3.6513	18810	37610	18800
**				
50000, kt	5 Dec 84 Delfic default $\mathrm{Rm}=.407$ sigma $=4$ silica soil			
Delgrp	diameter	BB	TT	Deltaz
10	799.84	7847	24020	16173
20	427.59	12390	37930	25540
30	273.97	14890	43790	28900
40	187.75	16440	46660	30220
50	132.13	17490	48230	30740
60	93.105	18220	49110	30890
70	64.063	18650	49610	30960
80	41.447	19040	49950	30910
90	22.824	19040	50110	31070
100	3.6513	19040	50150	31110

Values for the 50 MT burst were not incorporated into the polynomial fits; Hopkins data covers 1 to 15000 kt only and yields larger than this will be uncommon in any event.

Following a method developed by Hopkins (Ref ll), for each yield a linear least-squares fit was obtained for particle diameter in microns versus altitude in meters. Deviations from linearity were quite small, with deviations in altitude typically less than 1%. DeltaZ was fitted in the same manner as altitude. The least-squares linear fits to the above data follow.

	TOP OF TOP WAFER	
	slope(m/micron)	intercept(m)
YIELD (kt)	-5.01902	3316.48
1	-5.87268	6820.28
10	-8.7145	12182.5
100	-12.582	18456.3
1,000	-23.9386	38680
15,000	-33.4709	51809.4

BOTTOM OF BOTTOM WAFER

YIELD (kt)	slope(m/micron)	intercept (m)
1	-5.91157	2171.19
10	-6.95509	4656.53
100	-9.19309	7703.61
1,000	-10.7505	10608.7
15,000	-14.0467	19077.2
50,000	-14.8734	19348.4
	DELTA Z	
YIELD (kt)	slope(m/micron)	intercept(m)
1	+1.01059	1135.89
10	+1.08241	2163.75
100	+0.260011	4503.59
1,000	-1.8315	7847.69
15,000	-9.89187	19603.5
50,000	-18.5842	32454.3

The natural log of each of the above slopes and each of the above intercepts were least-squares fit to a polynomial in $\ln (\mathrm{Y})$, the natural \log of the yield in kilotons. The values for slope were combined with additive factors to make them non-negative so that the logs could be taken. This method of fit was used because it gave the smallest errors of all the methods tried.

Values for the 50 MT bursts were not incorporated into the polynomial fits; Hopkins' data covers 1 to 15000 kt only and yields larger than this will be uncommon in any event.

Slopes and Intercepts for the various fits are identified by subscripts. The subscript T identifies the fit to the Top of the top wafer, b identifies the fit to the bottom wafer, and d refers to the fit of the DeltaZ for each group. These polynomials are given below.

Also included below is the polynomial fit used by Hopkins. Hopkins found the center altitude for each of the twenty wafers in each group, then averaged them to obtain an (average) center altitude for the group. These polynomials are identified by the subscript m.

The altitude of the top of the disc is the altitude of the topmost wafer in the disc.

$$
\begin{array}{r}
S_{T}=-\operatorname{EXP}\left\{1.61324-.0682128(\ln Y)+.0843986(\operatorname{lnY})^{2}\right. \\
\left.-.0123826(\ln \mathrm{Y})^{3}+.000634405(\ln \mathrm{Y})^{4}\right\} \\
\mathrm{I}_{\mathrm{T}}=\operatorname{EXP}\left\{8.10667+.302301(\ln \mathrm{Y})+.0191831(\ln \mathrm{Y})^{2}\right. \\
\left.-.00748407(\ln \mathrm{Y})^{3}+.000518155(\operatorname{lnY})^{4}\right\}
\end{array}
$$

BOTTOM OF BOTTOM WAFER

The altitude of the bottom of the disc is the altitude of the lowest disc in the wafer.

$$
\begin{aligned}
& S_{b}=-\operatorname{EXP}\left\{1.77691-.0325444(\ln Y)+.0679667(\operatorname{lnY})^{2}\right. \\
& \left.-.0114241(1 \mathrm{nY})^{3}+.000590821(1 \mathrm{nY})^{4}\right\} \\
& I_{b}=\operatorname{EXP}\left\{7.68304+.372472(1 \mathrm{nY})-.0107429(\operatorname{lnY})^{2}\right. \\
& \left.-.0039146(\operatorname{lnY})^{3}+.000358551(\operatorname{lnY})^{4}\right\}
\end{aligned}
$$

The thickness of the disc，DeltaZ，is the difference in altitudes of the top and bottom of the disc．
$x=\ln (y)$

$$
\begin{aligned}
S_{d}= & 7-\operatorname{EXP}\left\{1.78999-.048249 x+.0230248 x^{2}\right. \\
& \left.-.00225965 x^{3}+.000161519 x^{4}\right\} \\
I_{d}= & \operatorname{EXP}\left\{7.03518+.158914(1 \mathrm{nY})+.0837539(\operatorname{lnY})^{2}\right. \\
& \left.-.0155464(1 \mathrm{nY})^{3}+.000862103(\ln Y)^{4}\right\}
\end{aligned}
$$

DISC CENTER ALTITUDE

Altitude of the average center of a mono－size particle disc． The average center is determined by averaging the center heights of the wafers of which the disc is composed．（Ref 11）

$$
\begin{array}{r}
S_{m}=-\operatorname{EXP}\left\{1.574-.01197(\ln Y)+.03636(\ln \mathrm{Y})^{2}\right. \\
\left.-.0041(\ln Y)^{3}+.0001965(\ln \mathrm{Y})^{4}\right\} \\
I_{\mathrm{m}}=\operatorname{EXP}\left\{7.889+.34(\ln \mathrm{Y})+.001226(\ln \mathrm{Y})^{2}\right. \\
\left.-.005227(\ln Y)^{3}+.000417(\ln Y)^{4}\right\}
\end{array}
$$

The altitude for a given particle size for any of the above fits is found by using the equation below．It will typically return values within 5% of the original data listed above．

PARTICLE SIZE VS INITIAL ALTITUDE
1 KT TO $15,000 \mathrm{KT}$丸木大

Particle Altitude $\mathrm{Z}=$ INTERCEPT＋ 2 （Particle Radius）（SLOPE）
where the particle radius is in micrometers and the altitude is in meters，and the yield for the intercepts and slopes is given in kilotons．

A2. Time since burst and radius of the cloud at vertical stabilization.

DELFIC raw data for vertical cloud stabilization		
yield (KT)	RADIUS (M)	TIME (SEC)
1	856.6	347.1
10	1612	347.0
100	3324	313.2
1,000	5651	845.2
15,000	13680	162.9
50,000	22850	166.2

 POLYNOMIAL FITS FOR VERTICAL CLOUD STABILIZATION 1 KT TO 50,000 KT **

$$
\begin{array}{r}
\text { Vertical Stabilization Time (seconds) } \\
\mathrm{T}_{\mathrm{s}}=385.295-99.1476(\ln \mathrm{Y})+64.6314(\ln Y)^{2} \\
-8.21379(\ln Y)^{3}+.323598(\ln Y)^{4}
\end{array}
$$

$$
\begin{gathered}
\text { Vertical Stabilization Radius (meters) } \\
(\text { see Eq }(5) \text { to convert radius to sigma radius) } \\
\bar{S}_{0}=868.277-632.399(\operatorname{lnY})+625.132(\ln Y)^{2} \\
-112.586(\operatorname{lnY})^{3}+7.16648(\ln Y)^{4}
\end{gathered}
$$

DELFIC raw data for vertical cloud stabilization

YIELD (KT)	RADIUS (M)	TIME (SEC)
1	902.8	382.1
10	1788	424.5
100	5213	610.7
1000	16620	845.2
15000	52330	850.4
50000	110000	918.7
*** POLYNOMIAL FITS FOR HORIZONTAL CLOUD STABILIZATION 1 RT TO 50,000 KT ***		
(Cloud Rise module termination)		

$$
\begin{aligned}
& \text { Horizontal Stabilization Time (seconds) } \\
& T_{h}=385.295-99.1476(\ln Y)+64.6314(\ln Y)^{2} \\
& -8.21379(\ln \mathrm{Y})^{3}+.323598(\ln \mathrm{Y})^{4} \\
& \text { Horizontal Stabilization Radius (meters) } \\
& \text { (see } \mathrm{Eq}_{q}(5) \text { to convert radius to sigma radius) } \\
& S_{h}=\operatorname{EXP}\left\{6.08948+.0546004(\ln Y)+.136646(\operatorname{lnY})^{2}\right. \\
& \left.-.0173576(\ln \mathrm{Y})^{3}+7.42803 \mathrm{E}-4(\operatorname{lnY})^{4}\right\}
\end{aligned}
$$

Delfic Raw Data For Dust Mass

Yield	Condensation Time SEC	Mass	Dust Fraction
1	2.3278	KG	(on dust/ton yield
10	3.6658	$6.8862 \mathrm{e}+6$.156150
100	5.8238	$5.2521 \mathrm{e}+7$.119095
1000	9.4618	$4.0058 \mathrm{e}+8$.090835
15000	17.4996	$4.3693 \mathrm{e}+9$.066052
50000	21.9029	$1.2641 \mathrm{e}+10$.05733

** POLYNOMIAL FITS FOR DUST MASS AND SOLIDIFICATION TIME 1 KT TO 50,000 KT *** (Fireball module)

$$
\begin{aligned}
& \frac{\text { Solidification Time (seconds) }}{} \\
& \mathrm{T}_{\text {solid }}= 2.31466+.786315(\ln \mathrm{Y})-.149574(\ln \mathrm{Y})^{2} \\
&+.035455(\ln \mathrm{Y})^{3}-.001189(\ln \mathrm{Y})^{4}
\end{aligned}
$$

Dust Fraction

$$
\begin{aligned}
\mathrm{DF}= & .204731-.0240532(\operatorname{lnY})+1.39148 \mathrm{E}-3(\operatorname{lnY})^{2} \\
& -4.88467 \mathrm{E}-05(\operatorname{lnY})^{3}+8.62805 \mathrm{E}-7(\operatorname{lnY})^{4}
\end{aligned}
$$

Appendix B

Glossary of Program Terms

ACCELLG	$9.80665 \mathrm{~m} / \mathrm{s}^{2}$
ACTIVITY.REPORT\$	menu control variable
ACTSIZE.REPORT\$	menu control variable
AIRCRAFT.FILE\$	name of aircraft specification program
AIRCRAFTS	name of aircraft to report on
ALPHA	cumulative log normal distribution term
ANS $\$$	menu control variable
ANSWER\$	menu control variable
AR(G)	activity of a particle group at an altitude
.DOP	dose report file name extant
. MOP	dust report file name extant
A1. PERCENT	unit time activity of a particle group
RM	mean radius of a dust particle
.RMA	equal activity group file extant
. RMM	equal mass group file extant
.SPC	aircraft specification file extant
BETA	cumulative 10 g normal distribution term
BOMB.DENSITY	density of multiple bombs in target area
BURST.AMP .FACTOR	factor for multiple bursts
CABIN.ACTIVITY	total cabin activity
CABIN .AR	activity due to a given group
CABIN.DOSE	dose due to trapped dust in cabin

CABIN.DOSE.RATE	at the center of the cabin
CABIN.GEOMETRY	dimensionless factor for dust dose
CABIN.SUM.ACTIVITY.PER.METER	activity density of "unfiltered" cloud
DATE.TIMES	date stamp for files
DCF	dose conversion factor
DELAY	menu control variable
DELFIC	default particle size distribution
DELFIC.DOP	default output file name for dose report
DELTAT	time interval for cloud fall
DELTAX	aircraft miss distance to cloud center
DELTAY	aircraft miss distance to cloud center
DINTERCEPT	formula for thickness of particle group
DOSE	fo aircrew in rem
DSLOPE	formula for thickness of particle group
FUST.DOSES	gaussian term for horizontal distribution
F	menu control variable - dust or dose report?

GAMMA.TX.FACTOR
GAMMA .MFP
GAUSSIANZM
G.AT.Z

HC
HOW.MANY.TIMES
HR
INPUT.FILE\$
INTERVAL
LAST. AREA
LAST .TIME.STOP
LASTG
LK
MASS
MASS.FLOW
MASS .INTEGRAL
MASS .REPORT\$
MASS.SIZE.REPORT\$
MAXG
MEV
MINTERCEPT
MSLOPE
MSN.TIME.REM
MUARHO
MUT . 213
MUTRHO
NUMBER.BOMBS
gaussian term for altitude distribution gammas that make it through cabin walls mean free path of a gamma ray in air contribution of a partice group at an altitude gravity at altitude z
initial activity center altitude
the number of report times
time in hours
name of an input file
time between report times
used in trapezoidal integration the last time a report was made
largest particle group still airborne
atmospheric temperature lapse rate
of the cabin
of air into the cabin
of the aircraft cabin
menu control variable
menu control variable
group that adds the most activity at altitude
gamma ray energy in MeV
Hopkins formula for initial altiude of particle Hopkins formula for initial altiude of particle time from cloud penetration to landing
tissue absorption crossection
gama ray transmission coefficient for aluminum
gamma ray cross section for air at altitude z
number of weapons in multiple burst problem

PART.TIME
PER(G)
PI
PRESSURE. VOLUME
PV.AREA
PV.MASS
PZ
RADIUS
REYNOLDS.NUMBER
RHOAIRZ
RHOFALLOUT
SHARP\$
SHEAR
SIGMA.RM
SIGMAX
SIGMAY
SIGMAZ
SIZE.LABEL\$
SKYSHINE .DOSE
STAB.TIME
STARS
SUM.ACTIVITY.PER .METER
TA
TC
TIME
TIME . STOP
TK
name of output file to be created interval counter for cloud fall loop \% activity at an altitude due to group G 3.14159
volume of aircraft pressurized cabin area of aircraft pressurized cabin mass of aircraft pressurized cabin atmospher ic pressure at altitude z radius of dust particle
dimensionless
airdensity at altitude z
target material density
tag denoting multiple burst is too early variation of wind speed with altitude particle cumulative $10 g$ normal distribution horizontal normal distribution of cloud horizontal normal distribution of cloud vertical normal distribution of cloud report label for size groups dose to crew due to immersion in cloud time of cloud vertical stabilization tag denoting gamma mfp $>.2$ sigmax activity density for all groups at an altitude time for toroidal growth
time constant for toroidal growth
counter for cloud fall loop
one of the output report times
atmospher ic temperature in degrees K

TRANSIT.TIME
TRAP.CENTER

TZ
VAC
WHICE\%
WHICH\$
WIND.SHEAR.X
WIND.SHEAR.Y
YIELDRT
ZAC
WORST . ALT
ZAC.HI
ZAC.LO
ZAC.STEP
Z.STEPS

ZM(G)
time to cross a multiple burst cloud center of trapezoid of integration atmospher ic temperature lapse rate True Air Speed of aircraft in m / s menu selection command menu selection command longitudinal component of wind crosswind component of the wind yield of weapon in kilotons height of aircraft estimat \hat{Y} ed worst penetration altitude highest penetration altitude lowest penetration altitude distance between penetration altitudes the number of altitudes to be reported altitude of particle in group G

Particle Size Program

This program will compute 100 equal activity groups and 100 equal mass groups from the rm and $\sigma_{r m}$ of a number size distribution. Examples of some number size distributions that have been proposed for nuclear clouds are given in Table I. See Chapter II for details.

The program is menu driven and easy to use. Simply input the requested data at the prompts; both the activity size and mass size groups will be computed and stored in a disk file. The program can be used by itself or called by the menu program in Appendix E.

8000 '2, 2.5, 3 moment
8010 'compute size (um) of 100 equal activity and equal mass groups 8020 ' given Rm , sigma Rm , and volume fraction, find equal activity 8030 'and equal mass size groups from the number size distribution $8040{ }^{-28}$ Dec 84 Capt Conners

8050 DIM RM(100)
8060 INPUT "What is the date and time";DATE.TIME
8070 GOSUB 8991 : 'print header
8080 PRINT "Select a number size distribution from the following list:"
8090 PRINT

8100 PRINT "		Rm	Sigma Rm"	
8110 PRINT "			micrometers"	
8120 PRINT "	1	NRDL-N61	.00039	$7.24 "$
8130 PRINT "	2	NRDL-C61	.0103	$5.38 "$
8140 PRINT "	3	NRDL-D	.01	$5.42^{\prime \prime}$


```
8710 A(R) = EXP(-.5*((LOG(RADIUS)-ALPHA(N))/BETA)^2)/(SQR2PI.BETA*RADIUS)
```

8720 IF RIGHT\＄（DFILE\＄，6）$=$＂DELFIC＂AND N $=1$
THEN $A(R)=(F V /(S Q R 2 P I . B E T A * R A D I U S)) * E X P(-.5 *((L O G(R A D I U S)-A L P H A(3)) / B E T A) \wedge 2)$
$+((1-F V) /(S Q R 2 P I . B E T A * R A D I U S)) * \operatorname{EXP}(-.5 *((L O G(R A D I U S)-A L P H A(2)) / B E T A) \sim 2)$
8730 LAST．AREA $=$ AREA
8740 AREA $=$ AREA $+(A(R)+$ LAST．A（R））＊DELTAR＊．5 ：＂trapezoidal integration
8750 LAST．$A(R)=A(R)$
8760 IF AREA＜TRAP．CENTER GOTO 8700 ：＇is curve area $=$ to 1% ？if not，go back $8770 \mathrm{RM}(\mathrm{G})=($ TRAP $\cdot \operatorname{CENTER}-L A S T \cdot A R E A) * D E L T A R /(A R E A-L A S T \cdot A R E A)+(R A D I U S ~-~ D E L T A R)$ 8780 IF $G>1$ THEN DELTAR $=(\operatorname{RM}(G)-\operatorname{RM}(G-1)) * .1$
$8790 G=G+1$
8800 TRAP．CENTER $=.01 * G-.005$
8810 IF G $<=100$ GOTO 8700

8830 ＇$* ~$
8840 OPEN＂O＂，疗1，OUTPUT．DFILE\＄
8850 FOR $G=1$ TO 100 STEP 5
8860 PRINTः1，RM（G）；RM（G＋1）；RM（G＋2）；RM（G＋3）；RM（G＋4）
8870 NEXT G
8880 PRINT非，＂Rm＝＂；RM；＂；sigma Rm＝＂；SIGMA．RM
8890 PRINT非1，＂＂：PRINT非1，＂＂
8900 IF $N=1$ THEN T\＄＝＂activity＂ELSE T\＄＝＂mass＂
8910 PRINT非，＂Mean radii in microns of the 100 equal＂T\＄＂groups＂
8920 PRINT\＃1，OUTPUT ．DFILES＂；computed from $r m=" ; R M ; " ;$ sigma $r m=$＂；SIGMA．RM
8930 PRINT非1，＂using inverse transform alpha＝＂N＂）＂
8940 PRINT非1，＂from the program SIZE．BAS 28 Dec 84 by Capt．Conners＂
8950 PRINT非 1 ，DATE ．TIME $\$$
8960 CLOSE

8970 IF $\mathrm{N}=1$ THEN $\mathrm{N}=3$ ELSE PRINT STRING\$(10,7) :CHAIN"MENU", 1000 ,ALL 8980 OUTPUT.DFILE\$ = DFILE\$ + ".RMM"

8990 GOTO 8600

8992 PRINT CHR\$(26) :'clear screen
8993 PRINT WHICH\$:PRINT
8994 RETURN

Aircraft Data

And Sample Specification Program

An Aircraft Specification Program must be constructed to input the nec?essary information about the aircraft into the main program. The minimum data needed for a variety of aircraft are listed in the BASIC AIRCRAFT DATA table below. From this, the data listed in the DERIVED AIRCRAFT DATA table must be computed by the user or the user's program. A sample program is included for the $B-1 B$ bomber. A similar program must be constructed for each aircraft desired. The program must start at line 7000 and the program name must have an . SPC file name extension.

The cabin geometry factor K can be computed using the program in Appendix K.

BASIC AIRCRAFT DATA

Aircraft	Cabin Mass KG	Cabin Area M^2	Pressure Volume M^3	Mass Flow RG/MIN	$@ 30,000$ feet MACH	Radius
B-1B -	11,511	107.9	28.3	17	M	
B-52G	11,262	81.6	51.9	22	.85	1.07
B-52B	10,854	81.6	51.9	22	.72	1.75
E-3	36,949	408.8	356.1	61.5	.53	1.75
E-4B	137,551	1,282	1686.0	276	.53	1.79
EC-135	40,750	310	244.2	50	.50	1.28
KC-135	18,073	310	232.2	50	.72	1.79

DERIVED AIRCAFT DATA

Aircraft	Mass Integral KG/M	Transmission Factor T $_{\text {gamma }}$	Pseudo Length M	Geometry Factor K	Velocity

* *

```
7000 'Program B-1B.SPC specification program *************************************
7010 '4 dec Capt. Conners for Dr. Bridgman
7020 `activity density *************************************************************
7030 VAC = 279.2 : 'M/S TAS M. }85\mathrm{ @30,000`
7040 PRESSURE.VOLUME = 28.34 :`M^3 crew and forward avionics
7050 MASS.FLOW = 17.01 : 'KG/min
range 11.34 to 22.68 depending on altitude, temperature, and leak rates.
Source uses 21.64 kg/min.
7055 engine.mass.flow = 161 :'KG/S bypass ratio =2.3
7060 'shielding factor **********************************************************
7070 PV.MASS = 11511.1 :'KG to station 542"
7080 PV.AREA = 107.9 :`M^2 wetted area to station 542"
7090 MASS.INTEGRAL = PV.MASS/PV.AREA : 'RG/M^2
7100 MUT.Z13 = 6.01271E-03 : 'M`2/KG for aluminum at 1 MeV
7110 'assume average gamma = 1 MeV and fuselage materials have similar
gamma ray crossections (low z). Total error in MUT estimated to be -0/+10%
based on the .7 and 1 MeV xsec of Al, C, O. See RB Drinkwater gne/ph/74-3
7120 gamma.tx.factor = EXP(-MUT.Z13*MASS.INTEGRAL)
7125 cabin.geometry = 1.39961 :`space integral of cabin
7130 'since all fuel is carried aft of the crew compartment, it is part of
7140 'an infinite shield and does not contribute to gamma.tx.factor
```

7150 'source: phone calls to George Clark, RI 16 Nov 84; letter 3 Dec 84;
7155 'visit to B-1 SPO at WPAFB 16 Nov 84

7170 filter routine
7190 FOR G $=1$ TO 100
7210 IF $\operatorname{RM}(G)<5$ THEN filter.tx.factor(G) $=1$!
$7220 \operatorname{IF} \operatorname{RM}(G)>=5 \operatorname{AND} \operatorname{RM}(G)<=10$ THEN filter.tx.factor(G) $=.1$
7230 IF $\operatorname{RM}(G)>10$ THEN filter.tx.factor $(G)=0$
7235 filter.tx.factor $(G)=1$
7240 NEXT G
7250 FILTER.CAPACITY $=.225 \quad: \quad$ KG
 7270 -filter.tx.factor=1 for none trapped; $=0$ if all trapped; =.1 if 90\%trapped

7280 'source: TFD-82-890 "Radiation Threat From Nuclear Dust In The ECS Particle Filter", W.Clark Powell III, Rockwell International 16 Dec 82, pl3

7300 chain"DOSE",4000,ALL

Menu Program

This program prompts the user for all the data necessary for the main program to compute dose to the aircrew or the dust ingested by the aircraft. To save memory and increase the speed of the main program, many housekeeping functions are accomplished by this part of the code. The program is written in Microsoft Basic version 5.02. No exotic software or machine dependent functions are used so that the code is highly portable.

The code is heavily documented; out of 40 R of code, about 12 K is documentation. The program is laid out in modules and is structured to prevent impediments in following the program flow. Long logical lines are broken up into a series of shorter physical lines. A semicolon : separates logical lines on a single physical line, and an apostrophe " is a short form of rem, the BASIC remark statement.

The program is run by entering BASIC and LOADing the menu program. The menu program takes over at this point and prompts the user for all necessary input. All other programs are called automatically by the CHAIN statement. All programs and data files must be on the same disk or the filename calling the CHAINed program or data file must be preceeded by the drive designator.

1000 ON ERROR GOTO 3810
1010 'master menu for dose and dust program 1020 'set up default scenario or accept user inputs 1030 -

1040 -2,7,8,20 dec 84 Capt. Conners for Dr. Bridgman

1060 PRINT "AIRCREW RADIATION DOSE AND DUST DENSITY PROGRAM" :PRINT

1080 PRINT "Created by Capt. Stephen P. Conners for Dr. Bridgman"
1090 PRINT STRING $(10,13)$
1100 PRINT "All keyboard entries must be terminated by <CR>" :PRINT
1110 INPUT "Enter the current date and time";DATE.TIMES :PRINT
1120 PRINT "Do you wish to:"
1130 PRINT " 1 Use the standard scenario"
1140 PRINT "2 Create your own scenario" :PRINT
1150 INPUT WHICH\% : IF WHICH\% = 2 THEN 2320
1160 IF WHICH\% < 0 OR WHICH\% > 1 THEN 1120
1170 -default scenario **

1190 WHICH\$ = "DEFAULT OPTION FOR STANDARD SCENARIO"
1200 YIELDKT $=1000 \quad$:'1 megaton
1210 NUMBER.BOMBS $=1$
$1220 \mathrm{FF}=.5 \quad$: ‘fission FRACTION
$1230 \mathrm{DF}=.333333 \quad$: 'dust FRACTION
$1 / 3$ ton of dust per ton of yield
1240 SIZE $\$=$ "DELFIC" \quad 'size distribution $\mathrm{rm}=.2035$, sigma=4.
1250 DUST.DOSE $\$=$ "dose" :'select crew dose, not dust density output
1260 ACTIVITY.REPORT\$ = "n"
1270 ACTSIZE.REPORT\$ = "n"
1280 INPUT.FILES = SIZE\$ + ".RMA"
1290 RHOFALLOUT $=2600 \quad: \not \subset K G / M^{\wedge} 3$ density of silicate rock

1310 AIRCRAFT\$ = "KC-135"
1320 AIRCRAFT.FILES = AIRCRAFT\$ + ".SPC"

1350 MSN.TIME.REM $=8 \quad: \quad$ HR crew is exposed to cabin dust
for 8 hours after encounter

1360 HOW.MANY.TIMES $=4$

1370 TIME. $\operatorname{STOP}(1)=1 \quad:$ 'HR

1380 TIME.STOP(2) $=2$

1390 TIME.STOP(3) $=4$

1400 TIME.STOP(4) $=8$
1410 'reporting altitudes and winds **

1420 Z.STEPS $=6$

1430 ZAC.HI $=12000$

1440 ZAC.LO $=2000 \quad:{ }^{\prime} \mathrm{M}$

1450 ZAC.STEP $=2000$

1460 WIND.SHEAR.X $=0$
1470 WIND.SHEAR.Y = 1

1490 OUTPUT.FILES = "DELFIC.DOP"
1500 PRINT CHR\$(26) :PRINT WHICH\$:PRINT
1510 PRINT "WEAPON/TARGET DATA:"

1520 PRINT "Number of weapons "NUMBER.BOMBS

1530 IF NUMBER.BOMBS > 1
THEN PRINT "Width of target field ---------------"FIELD.WIDTH/1000"KM
1540 PRINT "Weapon yield ---------------------------"YIELDKT"kt"

1570 PRINT "The size distribution input file is- "INPUT.FILE\$
1580 PRINT "The soil density is ----------------"RHOFALLOUT"KG/M^3" :PRINT
1590 PRINT "AIRCRAFT DATA:"

1600 PRINT "The aircraft specification file is - "AIRCRAFT.FILE $\$$:PRINT
1610 FOR DELAY $=1$ TO 1500 : NEXT DELAY
1620 PRINT CER\$(26) :PRINT WHICH\$:PRINT
1630 PRINT "TIME DATA:"
1640 PRINT "Time from cloud penetration"

1660 PRINT "Reporting times:"
1670 FOR T $=1$ TO HOW.MANY.TIMES
1680 PRINT TIME.STOP(T)"HR"
1690 NEXT T
1700 FOR DELAY $=1$ TO 1500 : NEXT DELAY
1710 PRINT CHR\$(26) :PRINT WHICH\$:PRINT
1720 PRINT "WIND AND ALTITUDE DATA:"
1730 PRINT "Wind shear X (along track) ---------"WIND.SHEAR.X"(KM/HR)/KM"
1740 PRINT "Wind shear Y (cross track) --_-_-_-_WIND.SHEAR.Y"(KM/HR)/KM"
1750 PRINT :PRINT "Reporting altitudes:"
$1760 \mathrm{ZAC}=\mathrm{ZAC} . \mathrm{HI}+\mathrm{ZAC} . S T E P$
1770 FOR $Z=1$ TO Z.STEPS
$1780 \mathrm{ZAC}=\mathrm{ZAC}-\mathrm{ZAC} . \operatorname{STEP}$
1790 PRINT ZAC"M"
1800 NEXT Z
1810 FOR DELAY $=1$ TO 1500 : NEXT DELAY
1820 PRINT CHRS(26) :PRINT WHICH\$:PRINT
1830 PRINT "The output file will be named ------ "OUTPUT.FILES :PRINT
1840 PRINT DATE.TIME\$
1850 DIM RM(100), ZM(111), $\operatorname{GAUSSIANZM}(101), \operatorname{AR}(101), \operatorname{PERCENT} .25(101), \operatorname{PER}(101)$, SIGMAZ (101) , CABIN .AR(101), FILTER .AR(101), FILTER.TX.FACTOR(101)

1860 DIM SUM.ACTIVITY.PER.METER(Z.STEPS),A3(Z.STEPS), CABIN.ACTIVITY(Z.STEPS), CABIN.DOSE (Z.STEPS), SKYSHINE .DOSE(Z.STEPS), GAMMA.MFP(Z.STEPS),

```
STAR$(Z.STEPS),CABIN.SUM.ACTIVITY .PER .METER(Z.STEPS)
1870 DIM FILTER.SUM.ACTIVITY.PER.METER(Z.STEPS),FILTER.ACTIVITY(Z.STEPS),
MAXG(Z.STEPS),ENGINE.MASS(Z.STEPS)
1880 'DELFIC initial cloud parameters *********************************************
1890 X = LOG(YIELDKT)
1900 MSLOPE=-EXP(1.54 -.01197*X +.03636*X^2 -.0041*X^3+.0001965*X^4)
1910 MINTERCEPT=EXP(7.889 +.34*X +.001226*X^2 -.005227*X^3 +.000417*X^4)
1920 DSLOPE=7-EXP(1.79-.048249*X+.0230248*X^2-2.25965E-03*X^3+1.61519E-04*X^4)
1930 DINTERCEPT=EXP(7.0352+.15892*X+.083754*X^2 -.0155464*X^3+8.62103E-04*X^4)
1940 compute initial alt for each =activity or group ***************************
1950 '************************************************************************
1960 PRINT "Now loading "INPUT.FILE$
1970 OPEN "I",#2,INPUT .FILE$
1980 FOR G = 1 TO 100
1990 INPUT#2,RM(G) :'radii in UM of 100 =activity groups
2000 ZM(G) = MINTERCEPT+MSLOPE* 2*RM(G) : 'METERS altitude of N", #"
2010 SIGMAZ(G) = (DINTERCEPT+DSLOPE* 2*RM(G))/4 : 'M DeltaZ/2 = 2 sigma
2020 NEXT G
2030 INPUT非2,SIZE.LABEL$
2040 CLOSE非2
2050 'WSEG functions ***************************************************************
2060 'Y = LOG(YIELDKT/1000) : 'ln yield megatons
2070 'HC=(44+6.1*Y-. 205*(Y+2.42)*ABS(Y+2.42))*304.8 :'M
2080 'SIGMAO=EXP((.7+Y/3)-3.25/(4!+(Y+5.4)^2))*1609.34 : 'M
2090 'DELFIC functions **************************************************************
2100 HC= ZM(50) :'M to =activity altitude
2110 SIGMAO = (868.277-632.399*X+625.132*X^2-112.586*X^3+7.16648*X^4)/2
:'delfic radius = 2 sigma .:. l sigma = delfic radius/2
2120.TC = 12*(HC/304.8)/60-(2.5*((HC/304.8)/60)^2) : '1/HR
```

2140	
2150	'**
2160	A1.PERCENT=5.3E+08*YIELDRT*FF/100 : 'unittime activity in CURIES/group
2170	ACCELLG $=9.80665 \quad:{ }^{\prime} \mathrm{M} / \mathrm{S}^{\wedge} 2$ acceleration due to gravity
2180	LASTG $=100 \quad$: ${ }^{\text {einitially } 100-s i z e ~ g r o u p s ~ a r e ~ u s e d ~}$
2190	LOGIO $=$ LOG(10) : - used to convert in to log
2200	MASS1 .PERCENT $=$ DF*YIELDRT*(1000*2000*.4535923700000003非)/100 : 'KG/group
2210	MEV $=1 \quad:{ }^{\prime} \mathrm{Ev}^{*} 1 \mathrm{l} 6$
2220	MUARHO $=.00306$: ${ }^{\text {M }}$ ^2/KG tissue absorption xsection @1 MeV
2230	MUT $=6.73015 \mathrm{E}-03 \quad:{ }^{\prime} \mathrm{M}^{\wedge} 2 / \mathrm{KG}$ air xsection (Std Atm) @1 MeV
2240	DCF $=3.7 \mathrm{E}+10 * 1.6 \mathrm{E}-11 * 3600 *$ MUARHO*MEV ${ }^{\text {a }}$ ('dose conversion factor
2250	$\mathrm{SQR2PI}=\operatorname{SQR}(2 * 3.14159)$
$\begin{aligned} & 2260 \\ & :{ }^{\circ} \text { HRS } \end{aligned}$	```STAB.TIME = (385.295-99.1476*X+64.6314*X^2-8.21379*X^3+.323598*X^4)/3600 time for cloud stabilisation```
2270	TIME $=$ STAB.TIME $\quad: \quad$ minimum time is cloud stab time
2280	TIME.STOP $=$ STAB.TIME $\quad:$ 'minimum time is cloud stab time
2290	
2300	PRINT "Now loading "AIRCRAFT\$" specifications file."
2310	CHAIN AIRCRAFT.FILE $\$, 7000$, ALL
2320	
2330	INPUT "What is the title for your scenario"; WHICH\$
2340	WHICH\$ = "CUSTOM SCENARIO: $"+$ which\$
2350	'report screen ***
2360	GOSUB 3610 : 'print header
2370	PRINT :PRINT "Do you want a:"
2380	PRINT "l Crew dose report"
2390	PRINT "2 Dust density report" : PRINT
2400	INPUT "(Default = 1 (dose))",WHICH\%

2410 IF WHICH\% = 1 OR WHICH\% = 0 THEN DUST.DOSES = "dose" :GOTO 2440 2420 IF WHICH\% = 2 THEN DUST.DOSE $\$=$ "dust" : GOTO 2500 2430 GOTO 2780

2440 PRINT "You have selected a crew dose report" :PRINT 2450 INPUT "Do you wish an activity report (y / n)";ANS\$ 2460 IF ANS $\$=" N "$ OR ANS $=$ " n " THEN ACTIVITY.REPORTS = "n" 2465 PRINT

2470 INPUT "Do you wish a prominent particle report ($\overline{\mathrm{I}} / \mathrm{n}$)";ANS\$
2480 IF ANS $\$=" N "$ OR ANS $\$=" n "$ THEN ACTSIZE.REPORT\$ = "n"
2490 GOTO 2530
2500 PRINT "You have selected a dust density report" :PRINT
2502 INPUT "Do you wish a cloud mass report (y / n)";ANS\$
2504 IF ANS $=$ " N " OR ANS $=" n$ " THEN MASS.REPORT\$ $=" n "$
2506 PRINT
2510 INPUT "Do you wish a prominent particle report (y / n)";ANS
2520 IF ANS $=$ " N " OR ANS $\$=" n "$ THEN MASS.SIZE .REPORTS = " n "

2540 GOSUB 3610 : "print header
2550 PRINT : PRINT "What is the weapon yield in KILOTONS?"
2560 INPUT "(Default $=1000 \mathrm{kt})$ ",YIELDKT
2570 IF YIELDKT $=0$ THEN YIELDKT $=1000$
2580 PRINT :PRINT "How MANY weapons created the cloud?"
2590 INPUT "(Default $=1$)", NUMBER.BOMBS
2600 IF NUMBER.BOMBS $=0$ THEN NUMBER.BOMBS $=1$
2610 IF NUMBER.BOMBS >1 THEN GOSUB 3720
2620 IF NUMBER .BOMBS < 1 THEN 2580
2630 PRINT :PRINT "What is the fission FRACTION of the weapon?"
2640 INPUT " $($ Default $=.5)$ ", FF

```
2650 IF FF < O OR FF > 1 THEN 2630
2660 IF FF = 0 THEN FF = . 5
2670 PRINT :PRINT "What is the dust FRACTION of the weapon?"
2680 INPUT "(Default = DELFIC prediction)",DF
2690 IF DF < O OR DF > 1 THEN }267
2700 X = LOG(YIELDKT)
2710 IF DF = 0
THEN DF = . 204731-.0240532*X+1.39148E-03* X^2-4.88467E-05*X^3+8.62805E-07*X^4
2720 'soil screen *********************************************************************
2730 GOSUB 3610 :'print header
2740 PRINT "What is the size distribution input FILE NAME?"
2750 INPUT "(Default = DELFIC)",SIZE$
2760 IF SIZES = "" THEN SIZE$ = "DELFIC"
2770 IF DUST.DOSES = "dose" THEN INPUT.FILE$ = SIZES + ".RMA"
2780 IF DUST.DOSES = "dust" THEN INPUT.FILES = SIZES + ".RMM"
2790 PRINT :PRINT "What is the soil density in KG/M^3?"
2800 INPUT "(Default = 2600 KG/M^3)",RHOFALLOUT
2810 IF RHOFALLOUT = 0 THEN RHOFALLOUT = 2600
2820 'aircraft screen **************************************************************
2830 GOSUB 3610 :'print header
2840 PRINT "Select an aircraft from the following list:" :PRINT
2850 PRINT " 1 B-1 B"
2860 PRINT " 2 B-52G"
2870 PRINT " 3 B-52H"
2880 PRINT " }4\mathrm{ E-3"
2890 PRINT " 5 E-4B"
2900 PRINT " 6 EC-135"
2910 PRINT " 7 KC-135"
```

```
2920 PRINT " 8 other"
2 9 3 0 ~ I N P U T ~ W H I C H \% ~
2 9 4 0 ~ I F ~ W H I C H \% ~ = ~ 0 ~ T H E N ~ W H I C H \% ~ = ~ 7 ~
                                    :`default aircraft
2 9 5 0 ~ I F ~ W H I C H \% ~ < ~ 1 ~ O R ~ W H I C H \% ~ > ~ 8 ~ T H E N ~ 2 8 3 0
2960 IF WHICH% = 1 THEN AIRCRAFT$ = "B-1B"
2970 IF WHICH% = 2 THEN AIRCRAFT$ = "B-52G"
2980 IF WHICH% = 3 THEN AIRCRAFT$ = "B-52H"
2990 IF WHICH% = 4 THEN AIRCRAFT$ = "E-3"
3000 IF WHICH% = 5 THEN AIRCRAFT$ = "E-4B"
3010 IF WHICH% = 6 THEN AIRCRAFT$ = "EC-135"
3020 IF WHICH% = 7 THEN AIRCRAFT$ = "KC-135"
3030 IF WHICH% = 8 THEN 3860
3040 PRINT "Aircraft selected is: "AIRCRAFT$
3050 FOR DELAY = 1 TO 300 :NEXT DELAY
3060 AIRCRAFT.FILE$ = AIRCRAFT$ + ".SPC"
3070 `time screen ***************************************************************
3080 DIM TIME.STOP(10)
3090 GOSUB 3610 :'print header
3100 ERASE TIME.STOP
3110 PRINT "How many cloud encounters do you wish to examine?"
3120 INPUT "(Default = 4)",HOW.MANY.TIMES
3130 IF HOW.MANY.TIMES=0 THEN HOW.MANY.TIMES = 4
:DIM TIME.STOP(HOW.MANY.TIMES)
:TIME.STOP(1) = 1
:TIME.STOP(2) = 2
:TIME.STOP(3) = 4
:TIME.STOP(4) = 8
:GOTO 3220
3140 DIM TIME.STOP(HOW.MANY.TIMES)
3150 PRINT "Please enter time in HOURS since burst in increasing order."
3160 PRINT
```

3170 FOR E $=1$ TO HOW.MANY.TIMES
3180 PRINT "What is time"E"?" : INPUT TIME.STOP(E)
3190 IF TIME.STOP(E) < . 15
THEN PRINT "Time must be exceed . 15 HR to allow cloud stabilization" :PRINT "and the Way-Wigner decay approximation." :GOTO 3150

3200 IF TIME.STOP(E) < TIME.STOP(E-1) THEN 3150
3210 NEXT E
3220 PRINT "The following times will be used:"
3230 FOR E $=1$ TO HOW.MANY.TIMES
:PRINT TIME.STOP(E)"HR"
:NEXT E
3240 INPUT "Is this acceptable (y / n)"; ANSWER\$
3250 IF ANSWER $\$=$ " N " OR ANSWER $\$=$ " n " THEN 3090
3260 PRINT
3270 PRINT "How many HOURS from encounter time to end of mission ?"
3280 INPUT "(Default $=8 \mathrm{Hr}$)",MSN.TIME.REM
3290 IF MSN.TIME.REM $=0$ THEN MSN.TIME.REM $=8$

3310 GOSUB 3610 :'print header
3320 PRINT "All altitudes are in METERS" :PRINT
3330 INPUT "What is the HIGHEST penetration altitude you wish to use"; ZAC. HI
3340 INPUT "What is the LOWEST penetration altitude you wish to use"; ZAC.LO
3350 INPUT "What altitude INCREMENT do you wish to use"; ZAC.STEP
3360 IF ZAC.HI $=0$ THEN ZAC.HI = $12000: Z A C . L O=2000: Z A C . S T E P=2000$
3370 IF ZAC.STEP $=0$ THEN 3310
3380 Z.STEPS $=$ INT(((ZAC.HI-ZAC.LO)/ZAC.STEP) +1.49999)

3400 GOSUB 3610 : 'print header
3410 PRINT "The following altitudes will be used:" :PRINT
$3420 \mathrm{ZAC}=\mathrm{ZAC} . \mathrm{HI}+\mathrm{ZAC} . \operatorname{STEP}$

3430 FOR $Z=1$ TO Z.STEPS
: ZAC = ZAC - ZAC.STEP
:PRINT ZAC"M"
:NEXT 2

3440 INPUT "Is this acceptable (y/n)";ANSWER\$
3450 IF ANSWERS = "N" OR ANSWER\$ = "n" THEN 3310

3470 GOSUB 3610 : 'print header
3480 PRINT "Wind shear is given in (KM/HR)/KM"
3490 PRINT "What is the wind shear in X (along track)"
3500 INPUT "(Default $=0$)"; WIND.SHEAR. X
3510 PRINT "What is the wind shear in Y (cross track)"
3520 INPUT "(Default $=1$)"; WIND.SHEAR.Y
3530 IF WIND.SHEAR. $Y=0$ THEN WIND.SHEAR. $Y=1$
3540 IF WIND.SHEAR. $Y=1$ THEN INPUT "Do you want Y shear to be $0 ?(y / n)$ ",ANSWERS
3550 IF ANSWER\$ $=$ "Y" OR ANSWER\$ $=" \mathrm{y}$ " THEN WIND.SHEAR. $Y=0$
3560 PRINT : PRINT "What is the output FILE NAME"
3565 IF DUST.DOSE $=$ "dose" THEN $D \$=$ ". ${ }^{\prime \prime}$ ELSE $D \$=$ ". $M^{\prime \prime}$
3570 PRINT "(Default is "SIZE\$;D\$"OP)"
3580 INPUT OUTPUT.FILES
3590 IF OUTPUT.FILES="'" AND DUST.DOSE\$="dose" THEN OUTPUT.FILES=SIZE\$ + ".DOP"
3595 IF OUTPUT.FILES="" AND DUST.DOSE\$="dust" THEN OUTPUT.FILES=SIZES + ".MOP"
3600 GOTO 1500

3620 PRINT CHR\$(26) : 'clear screen
3630 PRINT WHICH\$:PRINT
3640 PRINT "A11 file names MUST be in UPPERCASE!"
3650 PRINT "Hit <CR> to insert the default value for any input."
3660 PRINT

3670 RETURN

3690 PRINT "This option currently unimplemented." :FOR DELAY $=1$ TO 700 :NEXT DELAY :GOTO 2740

3700 'create other aircraft files **
3710 PRINT "This option currently unimplemented."
:FOR DELAY $=1$ TO 700 :NEXT DELAY :GOTO 2830

3730 PRINT

3740 PRINT "The target field is assumed to be square."
3750 INPUT "What is its width in KILOMETERS?",FIELD.WIDTH
3760 IF FIELD.WIDTH < . 1 THEN 3740

3770 FIELD.WIDTH = FIELD.WIDTH*1000 : 'convert KM to METERS
3780 BOMB.DENSITY = NUMBER.BOMBS/FIELD.WIDTH
3790 RETURN
$3800 \mathrm{IF} \mathrm{ERR}=53 \mathrm{AND} \mathrm{ERL}=1970$
THEN CHAIN"SIZE",8000,ALL
3810 IF $E R R=53$ AND ERL $=2310$
THEN PRINT "This file does not exist on the specified disk drive."
3820 IF ERR $=53$ AND ERL $=2310$
THEN PRINT "You must create and/or place the specified file on the correct drive."
3830 PRINT STRING\$(10,7) : 'Hey, you!
3840 ON ERROR GOTO 0
3850 END
3860 PRINT "This option currently unimplemented"

3870 FOR DELAY $=1$ TO 1500 : NEXT DELAY
3880 GOTO 2820

Appendix F

Main Program

4000 'DOSE .BAS
$4010{ }^{\circ} \mathrm{MegaCi} / \mathrm{m}$ at a given alt at a given time after burst
4020 'find $\mathrm{MCi} / \mathrm{m}^{\wedge} 2 \& \mathrm{MCi} / \mathrm{m}^{\wedge} 3$, compute skyshine and dust dose for crew
4030 'using sigmaz(G) $=$ dslope and dintercept
$4040{ }^{15} 16$ Dec 84 Capt Stephen P. Conners for Dr. Bridgman
4050 PRINT "US Standard Atmosphere (Mid Latitude, Spring/Fall). No vertical winds."

4060 GOSUB 5120 :'print output header
4070 IF DUST.DOSE $=$ "dust" THEN Al.PERCENT = MASSI.PERCENT : 'for dust report 4080 GOTO $6200 \quad$:'main program; subroutines first for speed

4110 IF $\mathrm{ZM}(\mathrm{G})<0$ THEN RHOAIRZ $=1.22473 \quad:$ ETAZ $=1.78938 \mathrm{E}-05$:GOTO 4250
4120 IF $\mathrm{ZM}(\mathrm{G})<11000$ THEN $\mathrm{TK}=288.15: \mathrm{PK}=101300!: \mathrm{LK}=-.006545$: $\mathrm{ZK}=0$: GOTO 4200
4130 IF $\mathrm{ZM}(\mathrm{G})<20000$ THEN $\mathrm{TK}=216.65: \mathrm{PK}=22690$:LK=0 $: \mathrm{ZK}=11000$:GOTO 4200
4140 IF $Z M(G)<32000$ THEN $T K=216.65: P K=5528$: $L K=.001 \quad: \mathbb{Z K}=20000:$ GOTO 4200
$4150 \mathrm{IF} \mathrm{ZM}(\mathrm{G})<47000$! THEN TK=228.65: $\mathrm{PK}=888.8: \mathrm{LK}=.0028$: $\mathrm{ZK}=32000$: GOTO 4200
$4160 \mathrm{IF} \mathrm{ZM}(\mathrm{G})<52000!$ THEN TK=270.65: PK=115.8 : LK $=0 \quad: \mathrm{ZK}=47000!:$ GOTO 4200
$4170 \mathrm{IF} \mathrm{ZM}(\mathrm{G})<71000$! THEN $\mathrm{TK}=270.65: \mathrm{PK}=115.8: \mathrm{LK}=-.00283: \mathrm{ZK}=520001:$ GOTO 4200
4180 IF $\mathrm{ZM}(\mathrm{G})<84852!$ THEN $T K=214.65: \mathrm{PK}=3.956$: $\mathrm{LK}=-.002 \quad: \mathrm{ZK}=71000$!: GOTO 4200
4190 IF $\mathrm{ZM}(\mathrm{G})>=84852$! THEN PRINT "Cloud MUCH too high! $\mathrm{zm}=$ "ZM(G):END
$4200 \mathrm{IF} \mathrm{LK}=0$ THEN TZ=TK : $\mathrm{PZ}=\mathrm{PK} * \operatorname{EXP}((-.034164 *(\mathrm{ZM}(\mathrm{G})-\mathrm{ZK})) / \mathrm{TK})$
: GOTO 4230
$4210 \mathrm{TZ}=\mathrm{TK}+\mathrm{LK} *(\mathrm{ZM}(\mathrm{G})-\mathrm{ZK}): \mathrm{PZ}=\mathrm{PK} *(\mathrm{TK} / \mathrm{TZ})^{\wedge}(.034164 / \mathrm{LK}) \quad:{ }^{\text {if }} \mathrm{if} \mathrm{LK} \ll 0$
4220 'tz $=$ temperature in degrees $K \quad:^{\prime} \mathrm{pz}=$ pressure in $T O R R$

```
4230 RHOAIRZ=(28.964/8314)*(PZ/TZ) :'density KG/M^3
4240 ETAZ=(TZ)^1.5*1.458E-06/(TZ+110.4) :`dynamic viscosity KG/M-S
4250 RETURN
4260 ` cloud fall computations ****************************************************
4270 "mcdonald - davies formulae *************************************************
4280 "********************************************************************************
4290 IF ZM(G)<0 THEN G.AT.Z = ACCELLG:GOTO 4310:`realistic settling rate@zm=0
4300 G.AT.Z=ACCELLG*6370.95^2/(6370.95+ZM(G)/1000)^2 :'correct g for altitude
4310 Q = 32*RHOAIRZ*RHOFALLOUT*G.AT.Z*(RM(G))^3/(3*ETAZ^2) : 'q=Re^2*Cd
4320 LOG10.Q = LOG(Q)/LOG10
4330 IF Q < 140 THEN REYNOLDS.NUMBER = Q/24
-2.3363E-04*Q^2 + 2.0154E-06*Q^3 - 6.9105E-09*Q^4
```



```
- .046677*(LOG10.Q)^2 + .0011235*(LOG10.Q)^3)
4350 IF Q > 4.5E+07 THEN PRINT "q too large = "Q
4360 FALL.VELOCITY = REYNOLDS.NUMBER*ETAZ/(2*RHOAIRZ*RM(G)) :'m/s
4370 FALL.VELOCITY = FALL.VELOCITY*(1 + 1.165E-07/(RHOAIRZ*RM(G)))
4380 'correction for drag "slip" at high altitude
4390 2M(G) = ZM(G) - FALL.VELOCITY*DELTAT*3600 :'new altitude after deltat
4400 RETURN
4410 compute sigma x, y and dose to crew *****************************************
```



```
4430 IF TIME > 3! THEN TA = 3! ELSE TA = TIME
4440 SIGMAX = SQR((SIGMAO^2)*(1!+(8!*TA)/TC)
+(SIGMAZ(MAXG(Z.STEP))*WIND.SHEAR.X*TIME)^2)
4450 SIGMAY = SQR((SIGMAO^2)*(1!+(8!*TA)/TC)
+(SIGMAZ(MAXG(Z.STEP))*WIND.SHEAR.Y*TIME)^2)
4460 DELTAY = 0
:`M fly through center of cloud
deltay = yl - y0 in meters
4470 'FX = 1 :'by definition
4480 FY = EXP(-.5*((DELTAY/SIGMAY)^2))/(SQR2PI*SIGMAY)
```

```
4490 IF NUMBER.BOMBS = 1
THEN BURST.AMP.FACTOR = 1
ELSE BURST.AMP.FACTOR = BOMB.DENSITY*(SQR2PI*SIGMAY)
4500 CABIN.SUM.ACTIVITY.PER.METER(Z.STEP) =
    CABIN.SJM.ACTIVITY .PER.METER(Z.STEP)*BURST .AMP .FACTOR
4510 FILTER.SUM.ACTIVITY.PER.METER(Z.STEP) =
FILTER.SUM.ACTIVITY .PER .METER(Z .STEP)*BURST .AMP .FACTOR
4520 CA2 = CABIN.SUM.ACTIVITY.PER.METER(Z.STEP)/(SQR2PI*SIGMAY)
4530 FA2 = FILTER.SUM.ACTIVITY.PER.METER(Z.STEP)/(SQR2PI*SIGMAY)
4540 A3(Z.STEP) = (CA2 + FA2)/(SQR2PI*SIGMAX)
4550 G=111 : ZM(G) = ZAC :GOSUB 4090 :'us std atm; fetch rhoairz
4560 CABIN.ACTIVITY(Z.STEP) = CA2*(MASS.FLOW/60)/(RHOAIRZ*VAC)
4570 FILTER.ACTIVITY(Z.STEP) = FA2*(MASS.FLOW/60)/(RHOAIRZ*VAC)
4580 ENGINE .MASS(Z.STEP) = (CA2 + FA2)*(ENGINE.MASS .FLOW)/(RHOAIRZ*VAC)
4590 CABIN.DOSE.RATE=DCF*CABIN.ACTIVITY(Z.STEP)*CABIN.GEOMETRY/PRESSURE.VOLUME
4600 CABIN.DOSE(Z.STEP) = 5*CABIN.DOSE.RATE*(TIME^-.2-(TIME+MSN.TIME.REM)^-.2)
4610 MUTRHO = MUT*RHOAIRZ : `M^2/KG air cross section at Z -
4620 GAMMA.MFP(Z.STEP) = 1/MUTRHO
4630 IF GAMMA.MFP(Z.STEP) < .2*SIGMAX
THEN STAR$(Z.STEP) = "'"
ELSE STAR$(Z.STEP) = "*"
4640 FZ = (CABIN.SUM.ACTIVITY.PER.METER(Z.STEP)
+ FILTER-SUM.ACTIVITY.PER.METER(Z.STEP))
4650 D1 = DCF*(FZ/MUTRHO)*(FY/(VAC*3600))
4660 SKYSHINE.DOSE(Z.STEP) = D1*(TIME^-1.2)*GAMMA.TX.FACTOR
4670 IF NUMBER.BOMBS = 1 THEN RETURN :'else
4680 'BURST.AMP.FACTOR = BOMB.DENSITY*(SQR2PI*SIGMAY)
4690 IF SIGMAY < (FIELD.WIDTH/1000)/SQR(NUMBER.BOMBS) THEN SHARP$ = "非"
4730 DELTAX = 0 :'Fly through center of cloud
4740 FX = EXP(-.5*((DELTAX/SIGMAX)^2))/(SQR2PI*SIGMAX)
4750 TRANSIT.TIME = (2*2*SIGMAX)/(VAC* 3600) :`HRS to cross 2 sigma cloud
```

```
4760 SKYSHINE.DOSE(Z.STEP) = D1*GAMMA.TX.FACTOR*(FX*VAC*3600)*5*
((TIME-TRANSIT.TIME/2)^-.2-(TIME+TRANSIT.TIME/2)^-.2)
:'The overlapped gaussians create a cloud with little horizontal variation
4 7 7 0 ~ R E T U R N
4780 - compute & sum the gaussian at A/C alt for each group *******************
4790 - *************************************************************************************
4800 'activities are at unit time
4810 ZAC = ZAC.HI + ZAC.STEP :'start at zaC.hi
4820 FOR Z.STEP = 1 TO Z.STEPS
4830 ZAC = ZAC - ZAC.STEP
4840 CABIN.SUM.ACTIVITY.PER.METER = 0
4850 FILTER.SUM.ACTIVITY.PER.METER = 0
4860 FOR G = 1 TO LASTG
4870 IF ABS(ZAC - ZM(G)) > 3*SIGMAZ(G) THEN GOTO 4960
4880 IF ABS(ZAC-ZM(G)) < ABS(ZAC-ZM(G-1)) THEN MAXG(Z.STEP) = G :'top down!
4890 GAUSSIANZM(G) = EXP(-.5*((ZAC-ZM(G))/SIGMAZ(G))^2)/.(SQR2PI*SIGMAZ(G))
4900 'gaussian part of zm(G) contributing to activity at zAC
4910 AR(G) = Al.PERCENT*GAUSSIANZM(G)
4920 CABIN.AR(G) = AR(G)* FILTER.TX.FACTOR(G)
4930 FILTER.AR(G) = AR(G)*(1-FILTER.TX.FACTOR(G))
4940 CABIN.SUM.ACTIVITY.PER.METER= CABIN.SUM.ACTIVITY.PER.METER + CABIN.AR(G)
4950 FILTER.SUM.ACTIVITY.PER.METER=FILTER.SUM.ACTIVITY.PER.METER +FILTER.AR(G)
4 9 6 0 ~ N E X T ~ G ~
4970 CABIN.SUM.ACTIVITY.PER.METER(Z.STEP) = CABIN.SUM.ACTIVITY.PER.METER
4980 FILTER.SUM.ACTIVITY.PER.METER(Z.STEP) = FILTER.SUM.ACTIVITY .PER.METER
4990 IF ZAC = WORST .ALT THEN GOSUB 5030 :'compute %activity
5 0 0 0 ~ G O S U B ~ 4 4 1 0 ~ : ' c o m p u t e ~ d o s e
5010 NEXT Z.STEP
5020 RETURN
```

```
5030 `compute percent activity *****************************************************
5040 "******************************************************************************
5050 FOR G = 1 TO LASTG
5060 PER(G) = (AR(G)/(CABIN.SUM.ACTIVITY.PER.METER
+ FILTER.SUM.ACTIVITY.PER.METER))*100
5070 IF PER(G) > PER(G-1) AND ZM(G) < 0 THEN PER(G) = PER(G-1)
5080 PERCENT.25(G) = INT(PER(G)*4*100)/100
5090 IF PERCENT.25(G) > 255 THEN PERCENT.25(G) = 255 :'max basic line length
5100 NEXT G
5110 RETURN
```


5140 OPEN " 0 ", 非 1 ,OUTPUT .FILE\$
5150 PRINT:⿰⿰三丨⿰丨三一俗,DATE.TIME\$:PRINT非1,"This is a "DUST .DOSE\$" report."
5160 PRINT非1,WHICHS :PRINT渄1," "
5170 PRINT渄 1 ,"WEAPON/TARGET DATA:"

:IF NUMBER.BOMBS >1

5220 PRINT非, "The size distribution input file is- "INPUT.FILE
5230 PRINT\#1," "SIZE.LABEL\$:PRINT\#1," "

5250 PRINT⿰⿰三丨⿰丨三⿻⿻一㇂㇒丶𠃌灬丶 $1, "$ "
5260 PRINT非 1 ,"The aircraft specification file is - "AIRCRAFT.FILE\$

5280 PRINT津1,""
5290 PRINT非1,"Time from cloud penetration"

```
5300 PRINT非1,"to end of mission ------------------"MSN.TIME.REM"HR"
5310 PRINT非,""
5320 PRINT非,"Wind shear X (along track) ---------"WIND.SHEAR.X"(KM/HR)/KM"
5330 PRINT伱,"Wind shear Y (cross track) --m-\infty---_"WIND.SHEAR.Y"(KM/HR)/KM"
5340 PRINT#1," "
5350 PRINT非,"The output file will be named ------ "OUTPUT.FILES :PRINT非," "
5360 RETURN
5370 'report subroutine *****************************************************************
5380 IF DUST.DOSE$ = "dust" THEN GOTO 5800 : "print mass report
5390 - print dose report to disk *************************************************
5400 PRINT非,STRING$(78,42)
5410 activities are in unit time and must be converted before printing
5420 PRINT非1,DATE.TIME$" "WHICH$
5430 PRINT非,"time (hr) ="TIME;SHARP$" deltat (hr) ="DELTAT" %airborne =
"LASTG" sigmax ="SIGMAX"M"
5440 PRINT非,"sigmay ="SIGMAY"M 3 sigmay cloud diameter =
"2*3*SIGMAY"M"
5450 PRINT非,"Altitude","Cabin Dust","Sky Shine","TotalDose","Prominent Particle"
5460 PRINT#1," M"," REM"," REM"," REM "," microns radius"
5470 ZAC = ZAC.HI + ZAC.STEP
5480 FOR Z.STEP = 1 TO Z.STEPS
5490 ZAC = ZAC - ZAC.STEP
5500 PRINT#1,ZAC,CABIN.DOSE(Z.STEP),SKYSHINE .DOSE(Z.STEP),CABIN.DOSE(Z.STEP)
+SKYSHINE .DOSE(Z.STEP);STAR$(Z.STEP),RM(MAXG(Z.STEP))*1E+06
5510 NEXT Z.STEP
5520 IF STAR$(1) = "*" THEN PRINT汸1,
"* Skyshine may be inaccurate due to large gamma mean free path (mfp >.2sigmax)"
:'only highest alt need be tested because if it occurs at some altitude,
it will occur for any higher altitude
5530 IF SHARP$ = "非 THEN
    PRINT非,"非 Dose inaccurate because burst field has not yet coalesced." ELSE
    PRINT洮,""
```


5560 PRINT非1，STRING\＄（78，45）：PRINT非1，DATE．TIMES＂＂WHICH\＄
5570 PRINT皮1，＂time（hr）＝＂TIME；SHARP\＄＂deltat（hr）＝＂DELTAT＂\％airborne＝ ＂LASTG＂sigmax＝＂SIGMAX＂M＂

5580 PRINT\＃1，＂Altitude，＂，＂Cloud Act＂，＂Filter Act＂，＂Cabin Act＂，
＂Prominent Particle＂

$5600 \mathrm{ZAC}=\mathrm{ZAC} . \mathrm{HI}+\mathrm{ZAC} . S T E P$
5610 FOR Z．STEP $=1$ TO Z．STEPS
$5620 \mathrm{ZAC}=\mathrm{ZAC}-\mathrm{ZAC} . \operatorname{STEP}$
5630 PRINT誛1，ZAC，（CABIN．SUM．ACTIVITY ．PER．METER（Z．STEP）
＋FILTER．SOM．ACTIVITY ．PER．METER（Z．STEP））＊（TIME＾－1．2）／1E＋06，
FILTER．ACTIVITY（Z．STEP），CABIN．ACTIVITY（Z．STEP），RM（MAXG（Z．STEP）） 1 （E＋06
5640 NEXT Z．STEP
5650 PRINT非1，＂For Group \＃＂，＂size（microns）＂，＂Altitude（M）＂$^{\prime}$
5660 FOR G $=10$ TO LASTG STEP 10
5670 PRINT誛 $1, G, R M(G) * 1 E+06, Z M(G)$
5680 NEXT G
5690 IF ACTSIZE．REPORT\＄＝＂n＂THEN 5790

5710 PRINT非1，STRING\＄（78，45）：PRINT\＃1，DATE．TIME\＄＂＂WHICH\＄
5720 PRINT非，＂The graph shows percent of total cloud activity for eachgroup at the maximum activity penetration altitude of＂WORST．ALT＂meters（ $1 / 4 \%$ per star）＂ 5730 PRINT非，＂Group\＃＂；＂Size＂，＂Altitude＂，＂PERCENT of Total Activity＂

5750 FOR G $=1$ TO LASTG
5760 PRINT非 1 ， $\mathrm{G} ; \mathrm{RM}(\mathrm{G}) * 1 \mathrm{E}+06, \mathrm{ZM}(\mathrm{G})$ ，STRING\＄（PERCENT．25（G），42）
5770 NEXT G
5780 PRINT\＃1，＂
＂；＂＂，＂＂，
 5810 PRINT件1，STRING\＄（78，42）：PRINTß1，DATE．TIME\＄＂＂WHICH\＄

5820 PRINT非 1 ，＂time（hr）＝＂TIME；SHARP\＄＂deltat（hr）＝＂DELTAT＂\％airborne＝ ＂LASTG＂sigmax＝＂SIGMAX＂M＂

```
5830 PRINT非,"sigmay ="SIGMAY"M 3 sigmay cloud diameter =
"2*3*SIGMAY"M"
5840 PRINT\1,"Altitude","Cloud Dens","Filter Mass","Cabin Mass","Engine Mass";
"Prom Part"
```


$5860 \mathrm{ZAC}=\mathrm{ZAC} . \mathrm{HI}+\mathrm{ZAC} . \mathrm{STEP}$
5870 FOR Z.STEP $=1$ TO Z.STEPS
$5880 \mathrm{ZAC}=\mathrm{ZAC}-\mathrm{ZAC} . \operatorname{STEP}$
5890 PRINT非1,ZAC,A3(Z.STEP)*(1000*1000),FILTER.ACTIVITY(Z.STEP),
CABIN.ACTIVITY(Z.STEP),ENGINE .MASS(Z.STEP);" ";RM(MAXG(Z.STEP))*1E+06
5900 NEXT Z.STEP
5910 IF MASS.REPORT\$ = "口" THEN 6080

5930 PRINT\#1,STRING\$(78,45) :PRINT\#1,DATE.TIME\$" "WHICH\$
5940 PRINT非, "time (hr) ="TIME;SHARP\$" deltat (hr) ="DELTAT" \%airborne =
"LASTG" sigmax ="SIGMAX"M"
5950 PRINT非1,"sigmay ="SIGMAY"M 3 sigmay cloud diameter $=$
"2*3*SIGMAY" M "
5960 PRINT非1,"initial dust lofted = "MASS1.PERCENT*100"Kg",
dust now airborne $=$ "MASS1.PERCENT*LASTG"Kg"
5970 PRINT非1,"Altitude","Cloud Mass"
5980 PRINT非 1 ," $M^{\prime \prime}, " \quad \mathrm{Kg} / \mathrm{M}^{\prime \prime}$
$5990 \mathrm{ZAC}=\mathrm{ZAC} . \mathrm{HI}+\mathrm{ZAC} . \mathrm{STEP}$
6000 FOR Z.STEP $=1$ TO Z.STEPS
$6010 \mathrm{ZAC}=\mathrm{ZAC}-\mathrm{ZAC} . \mathrm{STEP}$
6020 PRINT非 1 , ZAC, (CABIN.SUM.ACTIVITY.PER.METER(Z.STEP)

```
+ FILTER.SUM.ACTIVITY .PER.METER(Z.STEP))
```


6030 NEXT Z．STEP

6040 PRINT渄，＂For Group \＃＂，＂size（microns）＂，＂Altitude（M）＂
6050 FOR G $=10$ TO LASTG STEP 10
6060 PRINT\＃1，$G, \operatorname{RM}(G) * 1 E+06, \mathrm{ZM}(\mathrm{G})$
6070 NEXT G
6080 IF MASS．SIZE．REPORT\＄$=$＂ n ＂THEN 6180
 6100 PRINT\＃1，STRING\＄（78，45）：PRINT\＃1，DATE．TIME\＄＂＂WHICH\＄

6110 PRINT非1，＂The graph shows percent of total cloud mass for each group at the maximum density penetration altitude of＂WORST．ALT＂meters（1／4\％per star）＂ 6120 PRINT汭，＂Groupi\＃＂；＂Size＂，＂Altitude＂，＂PERCENT of Total Mass＂

6130 PRI	＂；	）	M＇，
＂0 1｜1	5	10	

6140 FOR G $=1$ TO LASTG
6150 PRINT\＃1，G；RM（G）＊1E＋06，ZM（G），STRING\＄（PERCENT．25（G），42）
6160 NEXT G
6170 PRINT\＃1，＂
＂0 1 i 1

｜＂，＂＂，

6180 RETURN

6220 FOR G $=1$ TO 100
$6230 \operatorname{RM}(G)=R M(G) * .000001 \quad: '$ convert micrometers to METERS
6240 NEXT G

$6260 \mathrm{G}=90: \mathrm{z} 90=\mathrm{zm}(90): \mathrm{ZM}(90)=0$
6270 GOSUB 4090 ：GOSUB 4260 ：＇find fall．velocity of 1 hr group at lowest alt

```
6275 zm(90) = z90
6280 INTERVAL = TIME.STOP(1) - TIME.STOP
6290 DELTAT = INTERVAL/INT(INTERVAL/(1400/(FALL.VELOCITY*3600)))
:'find the largest deltat that will not cause the largest particle to fall more
than }1400\mathrm{ meters; also, deltat must be an integral divisor of interval.
6300 '1400 meters is chosen because empirical testing has shown that this
is the largest distance a particle can fall without significantly affecting
the result.
6310 IF DELTAT < .1 OR DELTAT > 100 THEN DELTAT = INTERVAL/8
6320 `find worst case altitude to to plot %activity vs rm *********************
6330 IF YIELDKT < 10000 THEN ZSHIFT = 1000 ELSE ZSHIFT = 2000
6340 IF TIME <= 2 THEN WORST.ALT = HC ELSE WORST.STEP = HC - ZSHIFT
6350 'yield and time correction factors empirical from vertact for delfic
6360 '(worst case means maximum Ci/m; might not be maximum dose)
6370 IF DUST.DOSE$ = "dust" THEN WORST.ALT = ZM(50)
6380 ZAC = ZAC.HI + ZAC.STEP
6390 FOR Z.STEP = 1 TO Z.STEPS
6400 ZAC = ZAC - ZAC.STEP
6410 IF ABS(ZAC-WORST.ALT) <= .5*ZAC.STEP
THEN WORST.STEP = Z.STEP
:WORST.ALT = ZAC
:GOTO 6440
6 4 2 0 ~ N E X T ~ Z . S T E P ~
6430 WORST.STEP = 1
6440 'compute activity vs altitude for various fall times *********************
6450 "***************************************************************************
6460 FOR T = 1 TO HOW.MANY .TIMES
6470 LAST.TIME.STOP = TIME.STOP
6480 TIME.STOP = TIME.STOP(T)
6490 PRINT "Now computing for time ="TIME.STOP"hr"
6500 INTERVAL = TIME.STOP - LAST.TIME.STOP
6510 IF FALL.VELOCITY*DELTAT*3600 < 1400
```

```
THEN DELTAT = INTERVAL/INT(INTERVAL/(1400/(FALL.VELOCITY*3600)))
:IF DELTAT<.l OR DELTAT>100 THEN DELTAT = INTERVAL/8
:"if the largest size group falls<1400 meters in deltat, compute larger deltat
6520 G = 1
6530 WHILE G <= LASTG
6540 FOR PART.TIME = 1 TO INTERVAL/DELTAT
6 5 5 0 \text { GOSUB } 4 0 9 0
    :"us std atm
6560 GOSUB 4260 : 'cloud fall
6570 IF ZM(G) < -3*SIGMAZ(G)
THEN LASTG = G-1
:FOR CC = G TO LASTG
:ZM(CC) = -100000!
:NEXT CC
:'skip drift down if > 3 sigma underground
6580 NEXT PART.TIME
6590G=G+1
6 6 0 0 \text { WEND : 'g <= lastg}
6610 TIME = TIME + INTERVAL
6620 GOSUB 4780 :'sum gaussians for each altitude
6 6 3 0 \text { GOSUB 5370 : 'print output}
6640 NEXT T
6650 PRINT非,CHR$(12) :'form feed
6660 CLOSE
6 6 7 0 ~ P R I N T ~ S T R I N G \$ ( 1 0 , 7 ) ~ : ' a w a k e n ~ o p e r a t o r ~
6680 PRINT "Computations complete. File is stored in "OUTPUT.FILE$
6 6 9 0 \text { END}
```

Sample Single Burst Dose Output - Full Report

14 Feb 1556
This is a dose report. CUSTOM SCENARIO: B-1B; WITH filter; DELFIC cloud; one lMT bomb

WEAPON/TARGET DATA:

Fission fraction
1
Dust fraction
------------------------- . 333333
The size distribution input file is- DELFIC.RMA
$\mathrm{Rm}=.204$; sigma $\mathrm{Rm}=4$

The aircraft specification file is - B-1B.SPC

Time from cloud penetration

Wind shear X (along track) --_----- 0 ($\mathrm{KM} / \mathrm{HR}$)/KM
Wind shear Y (cross track) --......-- 1 (KM/HR)/KM
The output file will be named ----- B: GAPP .DOP
**
14 Feb 1556 CUSTOM SCENARIO: B-1B; WITH filter; DELFIC cloud; one 1MT bomb time $(\mathrm{hr})=.15$ deltat $(\mathrm{hr})=-9.50774 \mathrm{E}-03$ \%airborne $=98$ sigmax $=2977.15 \mathrm{M}$ sigmay $=2983.01 \mathrm{M} \quad 3$ sigmay cloud diameter $=17898 \mathrm{M} \cdots$.

Altitude M	Cabin Dust REM	Sky Shine REM	TotalDose REM	Prominent Particle microns radius
17000	3.89241	58.7864	$62.6788 *$.473992
16000	7.05376	118.791	$125.845 *$.473992
15000	9.85256	187.335	$197.188 *$.473992
14000	10.6072	231.806	$242.413 *$.473992
13000	8.80336	226.604	235.407	42.8646
12000	5.6323	176.928	182.56	126.317
11000	2.77723	112.437	115.214	202.228
10000	1.09192	62.2996	63.3916	272.629
9000	.331339	30.981	31.3123	326.279
8000	.0777644	15.1821	15.2599	403.868
7000	0	7.64285	7.64285	457.979
6000	0	4.65089	4.65089	529.291
5000	0	3.12039	3.12039	529.291
4000	0	2.17059	2.17059	629.064
3000	0	1.49812	1.49812	629.064
2000	0	1.24043	1.24043	782.496
1000	0	1.1288	1.1288	782.496
0	0	.72757	.72757	782.496

* Skyshine may be inaccurate due to large gamma mean free path (mfp >.2sigmax)

11	4.19655	13585.9	$* * * * *$
12	4.60222	13578.3	$* * * * *$
13	5.02038	13570.5	$* * * * *$
14	5.45171	13562.5	$* * * * *$
15	5.89686	13554.3	$* * * * *$
16	6.35641	13545.9	$* * * * *$
17	6.83098	13537.2	$* * * * *$
18	7.32119	13528.3	$* * * * *$
19	7.8276	13519.2	$* * * * *$
20	8.35085	13509.8	$* * * * *$
21	8.89157	13500.2	$* * * * *$
22	9.45039	13490.3	$* * * * *$
23	10.028	13480.2	$* * * * *$
24	10.625	13469.8	$* * * * *$
25	11.2422	13459.1	$* * * * *$
26	11.8803	13448.1	$* * * * *$
27	12.5401	13436.9	$* * * * *$
28	13.2223	13425.4	$* * * * *$
29	13.9278	13413.5	$* * * * *$
30	14.6576	13401.4	$* * * * *$
31	15.4124	13389	$* * * * *$
32	16.1934	13376.3	$* * * * *$
33	17.0015	13363.2	$* * * * *$
34	17.8378	13349.9	$* * * * *$
35	18.7035	13336.2	$* * * * *$
36	19.5996	13322.2	$* * * * *$
37	20.5276	13307.8	$* * * * *$
38	21.4887	13293.1	$* * * * *$
39	22.4844	13278	$* * * * *$
40	23.5162	13262.6	$* * * * *$
41	24.5856	13246.8	$* * * * *$
42	25.6944	13230.6	$* * * * *$
43	26.8444	13214	$* * * * *$
44	28.0374	13197	$* * * * *$
45	29.2756	13179.5	$* * * * *$
46	30.5611	13161.6	$* * * * *$
47	31.8962	13143.2	$* * * * *$
48	33.2835	13124.3	$* * * * *$
49	34.7255	13104.8	$* * * * *$
50	36.2252	13084.8	$* * * * *$
51	37.7855	13064.1	$* * * * *$
52	39.4098	13042.8	$* * * * *$
53	41.1016	13020.7	$* * * * *$
54	42.8646	12998	$* * * * *$
55	44.7032	12974.4	$* * * * *$
56	46.6215	12950	$* * * * *$
57	48.6246	12924.7	$* * * * *$
58	50.7175	12898.7	$* * * * *$
59	52.906	12871.8	$* * * * *$
60	55.1961	12844.3	$* * * * *$

61	57.5948	12816.1	$* * * * *$
62	60.109	12787.3	$* * * * *$
63	62.7472	12757.7	$* * * * *$
64	65.5178	12726.7	$* * * * *$
65	68.4309	12692.1	$* * * * *$
66	71.4967	12651.7	$* * * * *$
67	74.7277	12612.4	$* * * * *$
68	78.1363	12570.9	$* * * * *$
69	81.7377	12527	$* * * * *$
70	85.5478	12480.7	$* * * * *$
71	89.5848	12431.5	$* * * * *$
72	93.8697	12379.3	$* * * * *$
73	98.4248	12323.7	$* * * * *$
74	103.277	1264.3	$* * * * *$
75	108.456	12200.7	$* * * * *$
76	113.995	12132.3	$* * * *$
77	119.933	12058.6	$* * * *$
78	126.317	11978.9	$* * * *$
79	133.198	11892.2	$* * * *$
80	140.637	11797.8	$* * * *$
81	148.708	11694.4	$* * * *$
82	157.495	11580.3	$* * * *$
83	167.101	11454	$* * * *$
84	177.652	11313.2	$* * *$
85	189.298	11155.7	$* * *$
86	202.228	10977.5	$* * *$
87	216.678	10774.8	$* * *$
88	232.947	10542.1	$* *$
89	251.428	10272.1	$* *$
90	272.629	9955.32	$* *$
91	297.255	9578.12	$*$
92	326.279	9121.48	
93	361.108	8557.42	
94	403.868	7842.96	
95	457.979	6908.04	
96	529.291	5631.13	
97	629.064	3776.22	
98	782.496	896.84	0
			1

14 Feb 1556 CUSTOM SCENARIO: B-1B; WITH filter; DELFIC cloud; one 1 MT bomb time (hr) $=1$ deltat $(\mathrm{hr})=.10625$ \%airborne $=90$ sigmax $=3958.03 \mathrm{M}$ sigmay $=4343.43 \mathrm{M} \quad 3$ sigmay cloud diameter $=26060.6 \mathrm{M}$

$\begin{gathered} \text { Altitude } \\ M \end{gathered}$	Cabin Dust REM	Sky Shine REM	TotalDose REM	Prominent Particle microns radius
17000	1.15023	2.59592	3.74614 *	. 473992
16000	2.09225	5.1946	7.28685 *	. 473992
15000	2.93373	8.14236	11.0761	. 473992
14000	3.17099	10.1127	13.2837	. 473992
13000	2.64601	10.1119	12.7579	17.0015
12000	1.70168	8.33252	10.0342	31.8962
11000	. 843251	5.89719	6.74044	42.8646
10000	. 333273	3.95198	4.28525	55.1961
9000	. 101657	2.61766	2.71931	65.5178
8000	. 0239879	1.81552	1.83951	78.1363
7000	0	1.31614	1.31614	89.5848
6000	0	1.01115	1.01115	103.277
5000	0	. 793417	. 793417	113.995
4000	0	. 631872	. 631872	126.317
3000	0	. 508593	. 508593	140.637
2000	0	. 414059	. 414059	157.495
1000	0	. 338848	. 338848	167.101
0	0	. 278331	. 278331	189.298

* Skyshine may be inaccurate due to large gamma mean free path (mfp >.2sigmax)

14 Feb 1556 CUSTOM SCENARIO: B-1B; WITH filter; DELFIC cloud; one 1MT bomb The graph shows percent of total cloud activity for each group at the maximum activity penetration altitude of 13000 meters ($1 / 4 \%$ per star)

Group	$\text { lip } \begin{gathered} - \text { Size } \\ \text { uM } \end{gathered}$	$\begin{gathered} \text { Altitude } \\ \text { M } \end{gathered}$	$\begin{aligned} & \text { PERCENT } \\ & 0 \quad 1 \end{aligned}$
1	. 473992	13656.6	*******
2	. 904308	13647.2	*******
31	1.27327	13638.9	******
4	1.62603	13630.6	***
51	1.97515	13622.2	*******
6	2.32639	13613.4	*******
7	2.68294	13604.2	***
8	3.04692	13594.5	*******
9	3.41978	13584.3	*
10	3.80268	13573.5	*****

11	4.19655	13562	*******
12	4.60222	13549.9	*******
13	5.02038	13537	*******
14	5.45171	13523.3	*******
15	5.89686	13508.7	*******
16	6.35641	13493.2	*******
17	6.83098	13476.6	*******
18	7.32119	13459.1	*******
19	7.8276	13440.4	*******
20	8.35085	13420.4	*******
21	8.89157	13399.2	*******
22	9.45039	13376.6	*******
23	10.028	13352.6	*******
24	10.625	13327	*******
25	11.2422	13299.7	*******
26	11.8803	13270.6	*******
27	12.5401	13239.6	*******
28	13.2223	13206.6	*******
29	13.9278	13171.4	*******
30	14.6576	13133.9	*******
31	15.4124	13094	*******
32	16.1934	13051.5	*******
33	17.0015	13006.2	*******
34	17.8378	12958	*******
35	18.7035	12906.6	*******
36	19.5996	12851.9	*******
37	20.5276	12793.6	*******
38	21.4887	12731.7	*******
39	22.4844	12665.7	*******
40	23.5162	12595.6	*******
41	24.5856	12521.1	*******
42	25.6944	12442	*******
43	26.8444	12357.9	*******
44	28.0374	12268.8	*******
45	29.2756	12174.4	*******
46	30.5611	12074.5	*******
47	31.8962	11968.8	******
48	33.2835	11857.2	******
49	34.7255	11739.5	******
50	36.2252	11615.5	******
51	37.7855	11484.9	*****
52	39.4098	11347.7	*****
53	41.1016	11203.5	*****
54	42.8646	11051.9	****
55	44.7032	10892.3	****
56	46.6215	10723.4	****
57	48.6246	10545.6	***
58	50.7175	10355.9	***
59	52.906	10154.1	**
60	55.1961	9937.44	**

61	57.5948	9705.86	$* *$
62	60.109	9463.34	$*$
63	62.7472	9221.43	$*$
64	65.5178	8987.47	$*$
65	68.4309	8742.13	$*$
66	71.4967	8483.64	
67	74.7277	8208.73	
68	78.1363	7921.02	
69	81.7377	7619.13	
70	85.5478	7302.32	
71	89.5848	6968.98	
72	93.8697	6620.18	
73	98.4248	6253.74	
74	103.277	5868.45	
75	108.456	5463.14	
76	113.995	5036.52	
77	119.933	4585.97	
78	126.317	4112.48	
79	133.198	3612.63	
80	140.637	3084.51	
81	148.708	2525.55	
82	157.495	1933	
83	167.101	1303.91	
84	177.652	634.534	
85	189.298	-78.9946	
86	202.228	-843.808	
87	216.678	-1682.04	
88	232.947	-2605.78	
89	251.428	-3650.72	
90	272.629	-4810.92	

011111511110111

Sample Single Burst Dust Output - Full Report

14 Feb 1540
This is a dust report. CUSTOM SCENARIO: B-1B; WITH filter; DELFIC cloud; one lMT bomb

WEAPON/TARGET DATA:

Weapon yield -------------------------1000 KT
Fission fraction -------------------- . 5
Dust fraction ------------------------ . 333333
The size distribution input file is- DELFIC.RMM
$\mathrm{Rm}=.204$; sigma $\mathrm{Rm}=4$

The aircraft specification file is - B-1B.SPC

Time from cloud penetration

Wind shear X (along track) --------- 0 (KM/ER)/KM
Wind shear Y (cross track) -......-. 1 (KM/HR)/KM
The output file will be named ----- B:HAPP.DOP

14 Feb 1540 CUSTOM SCENARIO: B-1B; WITH filter; DELFIC cloud; one 1MT bomb time (hr) $=.15^{\circ}$ deltat $(\mathrm{hr})=-9.50774 \mathrm{E}-03$ \%airborne $=97$ sigmax. $=2984.51 \mathrm{M}$ sigmay $\doteq 2990.18 \mathrm{M} \quad 3$ sigmay cloud diameter $=17941.1 \mathrm{M}$

$\begin{aligned} & \text { Altitude } \\ & M \end{aligned}$	$\begin{gathered} \text { Cloud Dens } \\ \mathrm{mg} / \mathrm{M}^{\wedge} 3 \end{gathered}$	$\begin{gathered} \text { Filter Mass } \\ \mathrm{Kg} \end{gathered}$	Cabin Mass Kg	$\begin{gathered} \text { Engine } \mathrm{Ma} \\ \mathrm{Kg} \end{gathered}$	sProm Part microns
17000	96.0304	$4.68404 \mathrm{E}-03$	$4.6579 \mathrm{E}-04$	2.9246	1.83114
16000	239.548	. 0101235	8.4865E-04	6.2311	1.83114
15000	466.649	. 0170645	$1.19152 \mathrm{E}-03$	10.3676	1.83114
14000	715.181	. 022608	$1.28914 \mathrm{E}-03$	13.5712	1.83114
13000	868.852	. 0237215	$1.07498 \mathrm{E}-03$	14.082	43.4013
12000	846.547	. 0199445	$6.9087 \mathrm{E}-04$	11.7188	126.928
11000	674.985	. 0137109	$3.42125 \mathrm{E}-04$	7.98073	203.969
10000	455.84	. 0082512	$1.35056 \mathrm{E}-04$	4.76257	265.922
9000	276.339	$4.45783 \mathrm{E}-03$	$4.11434 \mathrm{E}-05$	2.55497	343.731
8000	163.329	$2.35157 \mathrm{E}-03$	$9.69034 \mathrm{E}-06$	1.34096	400.475
7000	98.2576	$1.26553 \mathrm{E}-03$	0	. 718694	436.194
6000	67.5878	$7.77917 \mathrm{E}-04$	0	. 44178	531.013
5000	50.5038	$5.20975 \mathrm{E}-04$	0	. 295862	531.013
4000	39.6719	$3.67796 \mathrm{E}-04$	0	. 208872	596.673
3000	31.9375	$2.66809 \mathrm{E}-04$	0	. 151521	682.738
2000	26.9662	$2.0351 \mathrm{E}-04$	0	. 115573	682.738
1000	24.0379	$1.64272 \mathrm{E}-04$	0	. 0932903	802.408
0	17.8357	$1.10625 \mathrm{E}-04$	0	. 0628238	802.408

11	11.4502	13455.5	$* * * *$
12	12.3266	13440.5	$* * * *$
13	13.2115	13425.5	$* * * *$
14	14.1066	13410.6	$* * * *$
15	15.0134	13395.6	$* * * *$
16	15.9334	13380.5	$* * * *$
17	16.8678	13365.4	$* * * *$
18	17.8178	13350.2	$* * * *$
19	18.7846	13334.9	$* * * *$
20	19.7693	13319.5	$* * * *$
21	20.7729	13304	$* * * *$
22	21.7967	13288.4	$* * * *$
23	22.8416	13272.7	$* * * *$
24	23.9087	13256.8	$* * * *$
25	24.9991	13240.7	$* * * *$
26	26.1139	13224.5	$* * * *$
27	27.2543	13208.1	$* * * *$
28	28.4213	13191.6	$* * * *$
29	29.6162	13174.8	$* * * *$
30	30.8404	13157.7	$* * * *$
31	32.0949	13140.5	$* * * *$
32	33.3813	13123	$* * * *$
33	34.7007	13105.2	$* * * *$
34	36.0549	13087.1	$* * * *$
35	37.4452	13068.6	$* * * * *$
36	38.8732	13049.8	$* * * * *$
37	40.3407	13030.6	$* * * * *$
38	41.8495	13011.1	$* * * * *$
39	43.4013	12991	$* * * * *$
40	44.9982	12970.6	$* * * * *$
41	46.6422	12949.7	$* * * * *$
42	48.3356	12928.3	$* * * * *$
43	50.0805	12906.5	$* * * * *$
44	51.8797	12884.3	$* * * * *$
45	53.7356	12861.8	$* * * * *$
46	55.6511	12838.9	$* * * * *$
47	57.6291	12815.7	$* * * * *$
48	59.6728	12792.2	$* * * * *$
49	61.7856	12768.5	$* * * * *$
50	63.9711	12744.1	$* * * * *$
51	66.2332	12718.5	$* * * * *$
52	68.5758	12690.3	$* * * * *$
53	71.004	12657.9	$* * * * *$
54	73.522	12627.1	$* * * * *$
55	76.1352	12595.2	$* * * * *$
56	78.8492	12562.2	$* * * * *$
57	81.6698	12527.9	$* * * * *$
58	84.6039	12492.2	$* * * * *$
59	87.6583	12455	$* * * * *$
60	90.8408	12416.3	$* * * * *$

61	94.1597	12375.8	$* * * * *$
62	97.6242	12333.5	$* * * * *$
63	101.244	12289.2	$* * * * *$
64	105.031	12242.8	$* * * * *$
65	108.996	12194.1	$* * * * *$
66	113.153	12142.8	$* * * * *$
67	117.516	12088.7	$* * * * *$
68	122.102	12031.6	$* * * * *$
69	126.928	11971.2	$* * * * *$
70	132.016	11907.1	$* * * * * *$
71	137.386	11839.2	$* * * * * *$
72	143.065	11766.9	$* * * * *$
73	149.079	11689.6	$* * * * *$
74	155.463	11606.9	$* * * * *$
75	162.252	11518.1	$* * * * *$
76	169.487	11422.3	$* * * * *$
77	177.217	11319.1	$* * * * *$
78	185.497	11207.3	$* * * * *$
79	194.389	11085.9	$* * * * *$
80	203.969	10953.3	$* * * * *$
81	214.324	10808	$* * * * *$
82	225.559	10648.3	$* * * *$
83	237.799	10471.8	$* * * *$
84	251.192	10275.6	$* * * *$
85	265.922	10056.4	$* * *$
86	282.217	9809.62	$* * *$
87	300.358	9529.92	$* *$
88	320.709	9210.09	$* *$
89	343.731	8840.96	$* *$
90	370.042	8410.07	$*$
91	400.475	7900.48	
92	436.194	7288.29	
93	478.866	6538.93	
94	531.013	5599.73	
95	596.673	4385.95	
96	682.738	2752.28	
97	802.408	541.882	

11	11.4502	13290.3	********
12	12.3266	13249.7	********
13	13.2115	13207.1	**̇*****
14	14.1066	13162.3	********
15	15.0134	13115.3	********
16	15.9334	13065.8	********
17	16.8678	13013.8	********
18	17.8178	12959.1	********
19	18.7846	12901.7	********
20	19.7693	12841.3	*********
21	20.7729	12778	*********
22	21.7967	12711.4	*********
23	22.8416	12641.7	*********
24	23.9087	12568.5	*********
25	24.9991	12491.8	*********
26	26.1139	12411.5	*********
27	27.2543	12327.5	*********
28	28.4213	12239.8	*********
29	29.6162	12148.1	*********
30	30.8404	12052.5	**********
31	32.0949	11952.9	**********
32	33.3813	11849.3	*********
33	34.7007	11741.5	*********
34	36.0549	11629.6	*********
35	37.4452	11513.5	*********
36	38.8732	11393.2	*********
37	40.3407	11268.5	*********
38	41.8495	11139.4	*********
39	43.4013	11005.5	********
40	44.9982	10866.5	********
41	46.6422	10721.6	********
42	48.3356	10571.5	*******
43	50.0805	10414.4	*******
44	51.8797	10249.3	******
45	53.7356	10076.2	******
46	55.6511	9893.3	*****
47	57.6291	9702.54	*****
48	59.6728	9505.04	****
49	61.7856	9306.29	****
50	63.9711	9118.46	***
51	66.2332	8927.23	***
52	68.5758	8729.88	**
53	71.004	8524.63	**
54	73.522	8310.94	*
55	76.1352	8089.71	*
56	78.8492	7861.08	*
57	81.6698	7624.8	*
58	84.6039	7380.54	
59	87.6583	7128.02	
60	90.8408	6866.34	

61	94.1597	6596.72
62	97.6242	6317.82
63	101.244	6029.23
64	105.031	5730.49
65	108.996	5421.24
66	113.153	5100.92
67	117.516	4769.05
68	122.102	4424.04
69	126.928	4067.66
70	132.016	3697.73
71	137.386	3313.83
72	143.065	2914.9
73	149.079	2500.2
74	155.463	2068.61
75	162.252	1619.14
76	169.487	1150.56
77	177.217	661.687
78	185.497	151
79	194.389	-383.061
80	203.969	-944.286
81	214.324	-1545.16
82	225.559	-2191.07
83	237.799	-2880.13
84	251.192	-3637.58
85	265.922	-4445.72

011115111110111

14 Feb 1621
This is a dose report.
CUSTOM SCENARIO: B-1B; WITH filter; DELFIC cloud; 300 1MT bombs
WEAPON/TARGET DATA:

Width of target field --------------- 150 KM
Weapon yield ------------------------1000 KT

The size distribution input file is- DELFIC.RMA
Rm $=.204$; sigma $\mathrm{Rm}_{\mathrm{m}}=4$

The aircraft specification file is - B-1B.SPC

Time from cloud penetration

Wind shear X (along track) -.......... 0 (KM/HR)/KM
Wind shear Y (cross track) --------- 1 (KM/HR)/KM
The output file will be named ------ B:IAPP.DOP
**
14 Feb 1621 CUSTOM SCENARIO: B-1B; WITH filter; DELFIC cloud; 3001 MT bombs time $(\mathrm{hr})=.15$ deltat $(\mathrm{hr})=-9.50774 \mathrm{E}-03$ \%airborne $=98$ sigmax $=2977.15 \mathrm{M}$ sigmay $=2983.01 \mathrm{M} \quad 3$ sigmay cloud diameter $=17898 \mathrm{M}$

$\begin{gathered} \text { Altitude } \\ \text { M } \end{gathered}$	Cabin Dust REM	Sky Shine REM	TotalDose REM	Prominent Particle microns radius
17000	58.3781	1407.91	1466.29 *	. 473992
16000	105.792	2845.01	2950.8 *	. 473992
15000	147.768	4486.62	4634.39 *	. 473992
14000	159.086	5551.69	5710.77 *	. 473992
13000	132.007	5426.07	5558.08	42.8646
12000	84.4263	4235.02	4319.45	126.317
11000	41.6165	2690.48	2732.1	202.228
10000	16.3577	1490.34	1506.7	272.629
9000	4.96265	740.976	745.939	326.279
8000	1.16438	363.006	364.17	403.868
7000	0	182.706	182.706	457.979
6000	0	111.154	111.154	529.291
5000	0	74.5758	74.5758	529.291
4000	0	51.8589	51.8589	629.064
3000	0	35.7926	35.7926	629.064
2000	0	29.622	29.622	782.496
1000	0	26.9561	26.9561	782.496
0	0	17.3747	17.3747	782.496
Skyshine may be inaccur		due to la	gamma mean	ee path (mfp >.2sig

11	4.19655	13585.9	*****
12	4.60222	13578.3	*****
13	5.02038	13570.5	*****
14	5.45171	13562.5	*****
15	5.89686	13554.3	*****
16	6.35641	13545.9	*****
17	6.83098	13537.2	*****
18	7.32119	13528.3	*****
19	7.8276	13519.2	*****
20	8.35085	13509.8	*****
21	8.89157	13500.2	*****
22	9.45039	13490.3	*****
23	10.028	13480.2	*****
24	10.625	13469.8	*****
25	11.2422	13459.1	*****
26	11.8803	13448.1	*****
27	12.5401	13436.9	*****
28	13.2223	13425.4	*****
29	13.9278	13413.5	*****
30	14.6576	13401.4	*****
31	15.4124	13389	*****
32	16.1934	13376.3	*****
33	17.0015	13363.2	*****
34	17.8378	13349.9	*****
35	18.7035	13336.2	*****
36	19.5996	13322.2	*****
37	20.5276	13307.8	*****
38	21.4887	13293.1	*****
39	22.4844	13278	*****
40	23.5162	13262.6	*****
41	24.5856	13246.8	*****
42	25.6944	13230.6	*****
43	26.8444	13214	*****
44	28.0374	13197	*****
45	29.2756	13179.5	*****
46	30.5611	13161.6	*****
47	31.8962	13143.2	*****
48	33.2835	13124.3	*****
49	34.7255	13104.8	*****
50	36.2252	13084.8	*****
51	37.7855	13064.1	*****
52	39.4098	13042.8	*****
53	41.1016	13020.7	*****
54	42.8646	12998	*****
55	44.7032	12974.4	*****
56	46.6215	12950	*****
57	48.6246	12924.7	*****
58	50.7175	12898.7	*****
59	52.906	12871.8	*****

60	55.1961	12844.3	$* * * * *$
61	57.5948	12816.1	$* * * * *$
62	60.109	12787.3	$* * * * *$
63	62.7472	12757.7	$* * * * *$
64	65.5178	12726.7	$* * * * *$
65	68.4309	12692.1	$* * * * *$
66	71.4967	12651.7	$* * * * *$
67	74.7277	12612.4	$* * * * *$
68	78.1363	12570.9	$* * * * *$
69	81.7377	12527	$* * * * *$
70	85.5478	12480.7	$* * * * *$
71	89.5848	12431.5	$* * * * *$
72	93.8697	12379.3	$* * * * *$
73	98.4248	12323.7	$* * * * *$
74	103.277	12264.3	$* * * * *$
75	108.456	12200.7	$* * * * *$
76	113.995	12132.3	$* * * *$
77	119.933	12058.6	$* * * *$
78	126.317	11978.9	$* * * *$
79	133.198	11892.2	$* * * *$
80	140.637	11797.8	$* * * *$
81	148.708	11694.4	$* * * *$
82	157.495	11580.3	$* * * *$
83	167.101	11454	$* * * *$
84	177.652	11313.2	$* * *$
85	189.298	11155.7	$* * *$
86	202.228	10977.5	$* * *$
87	216.678	10774.8	$* *$
88	232.947	10542.1	$* *$
89	251.428	10272.1	$* *$
90	272.629	9955.32	$*$
91	297.255	9578.12	$*$
92	326.279	9121.48	
93	361.108	8557.42	
94	403.868	7842.96	
95	457.979	6908.04	
96	529.291	5631.13	
97	629.064	3776.22	
98	782.496	896.84	

14 Feb 1621 CUSTOM SCENARIO: B-1B; WITH filter; DELFIC cloud; 300 1MT bombs time (hr) $=1$ deltat (hr) $=.10625$ \%airborne $=90$ sigmax $=3958.03 \mathrm{M}$ sigmay $=4343.43 \mathrm{M} \quad 3$ sigmay cloud diameter $=26060.6 \mathrm{M}$

Altitude M	Cabin Dust REM	Sky Shine REM	TotalDose REM	Prominent Particle microns radius
17000	25.4727	91.7404	$117.213 *$.473992
16000	46.3348	183.578	$229.913 *$.473992
15000	64.97	287.753	352.723	.473992
14000	70.2242	357.387	427.611	.473992
13000	58.5092	356.816	415.325	17.0015
12000	37.5767	293.627	331.203	31.8962
11000	18.6022	207.601	226.204	42.8646
10000	7.34381	138.968	146.311	55.1961
9000	2.23797	91.9615	94.1994	65.5178
8000	.52749	63.7091	64.2366	78.1363
7000	0	46.1374	46.1374	89.5848
6000	0	35.4026	35.4026	103.277
5000	0	27.7528	27.7528	113.995
4000	0	22.078	22.078	126.317
3000	0	17.7481	17.7481	140.637
2000	0	14.4278	14.4278	157.495
1000	0	11.7971	11.7971	167.101
0	0	9.67145	9.67145	189.298

* Skyshine may be inaccurate due to large gama mean free path (mfp >.2sigmax)

11	4.19655	13562	*******
12	4.60222	13549.9	*******
13	5.02038	13537	*******
14	5.45171	13523.3	*******
15	5.89686	13508.7	*******
16	6.35641	13493.2	*******
17	6.83098	13476.6	*******
18	7.32119	13459.1	*******
19	7.8276	13440.4	*******
20	8.35085	13420.4	*******
21	8.89157	13399.2	*******
22	9.45039	13376.6	*******
23	10.028	13352.6	*******
24	10.625	13327	*******
25	11.2422	13299.7	*******
26	11.8803	13270.6	*******
27	12.5401	13239.6	*******
28	13.2223	13206.6	*******
29	13.9278	13171.4	*******
30	14.6576	13133.9	*******
31	15.4124	13094	*******
32	16.1934	13051.5	*******
33	17.0015	13006.2	*******
34	17.8378	12958	*******
35	18.7035	12906.6	*******
36	19.5996	12851.9	*******
37	20.5276	12793.6	*******
38	21.4887	12731.7	*******
39	22.4844	12665.7	*******
40	23.5162	12595.6	*******
41	24.5856	12521.1	*******
42	25.6944	12442	*******
43	26.8444	12357.9	*******
44	28.0374	12268.8	******
45	29.2756	12174.4	*******
46	30.5611	12074.5	*******
47	31.8962	11968.8	******
48	33.2835	11857.2	******
49	34.7255	11739.5	******
50	36.2252	11615.5	******
51	37.7855	11484.9	*****
52	39.4098	11347.7	*****
53	41.1016	11203.5	*****
54	42.8646	11051.9	****
55	44.7032	10892.3	****
56	46.6215	10723.4	****
57	48.6246	10545.6	***
58	50.7175	10355.9	***
59	52.906	10154.1	**
60	55.1961	9937.44	**

61	57.5948	9705.86	$* *$
62	60.109	9463.34	$*$
63	62.7472	9221.43	$*$
64	65.5178	8987.47	$*$
65	68.4309	8742.13	$*$
66	71.4967	8483.64	
67	74.7277	8208.73	
68	78.1363	7921.02	
69	81.7377	7619.13	
70	85.5478	7302.32	
71	89.5848	6968.98	
72	93.8697	6620.18	
73	98.4248	6253.74	
74	103.277	5868.45	
75	108.456	5463.14	
76	113.995	5036.52	
77	119.933	4585.97	
78	126.317	4112.48	
79	133.198	3612.63	
80	140.637	3084.51	
81	148.708	2525.55	
82	157.495	1933	
83	167.101	1303.91	
84	177.652	634.534	
85	189.298	-78.9946	
86	202.228	-843.808	
87	216.678	-1682.04	
88	232.947	-2605.78	
89	251.428	-3650.72	
90	272.629	-4810.92	

Sample Multi Burst Dust Output - Full Report

14 Feb 1642
This is a dust report.
CUSTOM SCENARIO: B-1B; WITH filter; DELFIC cloud; 300 1MT bombs
WEAPON/TARGET DATA:

The size distribution input file is- DELFIC.RMM
$\mathrm{Rm}=.204$; sigma $\mathrm{Rm}=4$
The soil density is .-............-. $2600 \mathrm{KG} / \mathrm{M}^{\wedge} 3$
The aircraft specification file is - B-1B.SPC

Time from cloud penetration

Wind shear X (along track) ---......- 0 (KM/HR)/KM
Wind shear Y (cross track) --_-_--_- 1 (KM/HR)/KM
The output file will be named ----- B:JAPP.MOP

14 Feb 1642 CUSTOM SCENARIO: B-1B; WITH filter; DELFIC cloud; 300 1MT bombs time (hr) $=.15$ deltat (hr) $=-9.50774 \mathrm{E}-03$ \%airborne $=97$ sigmax $=2984.51 \mathrm{M}$ sigmay $=2990.18 \mathrm{M} \quad 3$ sigmay cloud diameter $=17941.1 \mathrm{M}$

Altitude M	Cloud Dens $\mathrm{mg} / \mathrm{M}^{\wedge} 3$	Filter Mass Kg	Cabin Mass Kg		Engine MassProm Part Kg
17000	1443.77	.0704225	$7.00295 \mathrm{E}-03$	43.97	1.83114
16000	3601.49	.152202	.0127591	93.6817	1.83114
15000	7015.86	.256557	.0179139	155.872	1.83114
14000	10752.4	.339901	.0193816	204.037	1.83114
13000	13060.4	.356577	.0161589	211.677	43.4013
12000	12720.5	.299693	.0103813	176.091	126.928
11000	10139.3	.205959	$5.13924 \mathrm{E}-03$	119.883	203.969
10000	6845.7	.123915	$2.02824 \mathrm{E}-03$	71.5232	265.922
9000	4148.75	.0669267	$6.17697 \mathrm{E}-04$	38.3585	343.731
8000	2451.58	.0352973	$1.45453 \mathrm{E}-04$	20.128	400.475
7000	1474.67	.0189932	0	10.7863	436.194
6000	1014.03	.0116712	0	6.62811	531.013
5000	757.719	$7.81628 \mathrm{E}-03$	0	4.43888	531.013
4000	595.075	$5.51691 \mathrm{E}-03$	0	3.13306	596.673
3000	478.929	$4.00102 \mathrm{E}-03$	0	2.27218	682.738
2000	404.381	$3.05179 \mathrm{E}-03$	0	1.73312	682.738
1000	360.34	$2.46252 \mathrm{E}-03$	0	1.39847	802.408
0	267.367	$1.65832 \mathrm{E}-03$	0	.941762	802.408

14 Feb 1642 CUSTOM SCENARIO: B-1B; WITH filter; DELFIC cloud; 300 1MT bombs time (hr) $=.15$ deltat (hr) $=-9.50774 \mathrm{E}-03$ \%airborne $=97$ sigmax $=2984.51 \mathrm{M}$ sigmay $=2990.18 \mathrm{M} \quad 3$ sigmay cloud diameter $=17941.1 \mathrm{M}$ initial dust lofted $=3.02395 \mathrm{E}+08 \mathrm{Kg} \quad$ dust now airborne $=2.93323 \mathrm{E}+08 \mathrm{Kg}$ Altitude Cloud Mass

M	Rg / M
17000	81193.6

16000202537
15000394551
14000604685
13000734341
$12000 \quad 714974$
$11000 \quad 569712$
$10000 \quad 384553$
$9000 \quad 232984$
$8000 \quad 137645$
$7000 \quad 82785.3$
$6000 \quad 56907.3$
$5000 \quad 42523$.
$4000 \quad 33388.2$
$3000 \quad 26864.2$
$2000 \quad 22682.6$
$1000 \quad 20205.1$
$0 \quad 14991.9$
For Group \# size (microns) Altitude (M)
$10 \quad 10.58 \quad 13470.6$
$20 \quad 19.7693 \quad 13319.5$
$30 \quad 30.8404 \quad 13157.7$
$40 \quad 44.9982 \quad 12970.6$
$50 \quad 63.9711 \quad 12744.1$
$60 \quad 90.8408 \quad 12416.3$
$\begin{array}{lll}70 & 132.016 & 11907.1 \\ 80 & 203.969 & 10953.3\end{array}$
$80 \quad 203.969 \quad 10953.3$
$90 \quad 370.042 \quad 8410.07$

14 Feb 1642 CUSTOM SCENARIO: B-1B; WITH filter; DELFIC cloud; 300 1MT bombs The graph shows percent of total cloud mass for each group at the maximum density penetration altitude of 12000 meters ($1 / 4 \%$ per star) Group\# Size Altitude PERCENT of Total Mass
uM M O I

1	1.83114	13630.8	$* * * *$
2	3.21367	13604.4	$* * * *$
3	4.30037	13583.9	$* * * *$
4	5.28023	13565.7	$* * * *$
5	6.20587	13548.6	$* * * *$
6	7.10111	13532.3	$* * * *$
7	7.9791	13516.5	$* * * *$
8	8.84808	13501	$* * * *$
9	9.71369	13485.7	$* * * *$
10	10.58	13470.6	$* * * *$

11	11.4502	13455.5	$* * * *$
12	12.3266	13440.5	$* * * *$
13	13.2115	13425.5	$* * * *$
14	14.1066	13410.6	$* * * *$
15	15.0134	13395.6	$* * * *$
16	15.9334	13380.5	$* * * *$
17	16.8678	13365.4	$* * * *$
18	17.8178	13350.2	$* * * *$
19	18.7846	13334.9	$* * * *$
20	19.7693	13319.5	$* * * *$
21	20.7729	13304	$* * * *$
22	21.7967	13288.4	$* * * *$
23	22.8416	13272.7	$* * * *$
24	23.9087	13256.8	$* * * *$
25	24.9991	13240.7	$* * * *$
26	26.1139	13224.5	$* * * *$
27	27.2543	13208.1	$* * * *$
28	28.4213	13191.6	$* * * *$
29	29.6162	13174.8	$* * * *$
30	30.8404	13157.7	$* * * *$
31	32.0949	13140.5	$* * * *$
32	33.3813	13123	$* * * *$
33	34.7007	13105.2	$* * * *$
34	36.0549	13087.1	$* * * *$
35	37.4452	13068.6	$* * * * *$
36	38.8732	13049.8	$* * * * *$
37	40.3407	13030.6	$* * * * *$
38	41.8495	13011.1	$* * * * *$
39	43.4013	12991	$* * * * *$
40	44.9982	12970.6	$* * * * *$
41	46.6422	12949.7	$* * * * *$
42	48.3356	12928.3	$* * * * *$
43	50.0805	12906.5	$* * * * *$
44	51.8797	12884.3	$* * * * *$
45	53.7356	12861.8	$* * * * *$
46	55.6511	12838.9	$* * * * *$
47	57.6291	12815.7	$* * * * *$
48	59.6728	12792.2	$* * * * *$
49	61.7856	12768.5	$* * * * *$
50	63.9711	12744.1	$* * * * *$
51	66.2332	12718.5	$* * * * *$
52	68.5758	12690.3	$* * * * *$
53	71.004	12657.9	$* * * * *$
54	73.522	12627.1	$* * * * *$
55	76.1352	12595.2	$* * * * *$
56	78.8492	12562.2	$* * * * *$
57	81.6698	12527.9	$* * * * *$
58	84.6039	12492.2	$* * * * *$
59	87.6583	12455	$* * * * *$
60	90.8408	12416.3	$* * * * *$

14 Feb 1642 CUSTOM SCENARIO: B-1B; WITH filter; DELFIC cloud; 300 1MT bombs time (hr) $=1$ deltat (hr) =. 10625 \%airborne $=85$ sigmax $=3994.78 \mathrm{M}$ sigmay $=4378.37 \mathrm{M} \quad 3$ sigmay cloud diameter $=26270.2 \mathrm{M}$

Altitude	Cloud Dens	Filter Mass	Cabin Mass	Engine MassProm Part	
M	mg/M^3	Kg	Kg	Kg	microns r
17000	508.615	.0296549	$6.85355 \mathrm{E}-03$	20.7332	1.83114
16000	1263.04	.064873	.0125618	43.9754	1.83114
15000	2473.95	.1118	.0177461	73.5695	1.83114
14000	3869.29	.153732	.0193224	98.2776	1.83114
13000	4926.36	.171973	.0162151	106.872	16.8678
12000	5239.02	.160447	.0104874	97.0741	32.0949
11000	4849.64	.129919	$5.22764 \mathrm{E}-03$	76.7499	43.4013
10000	4121.99	.0994262	$2.07771 \mathrm{E}-03$	57.6442	53.7356
9000	3410.69	.0736875	$6.37338 \mathrm{E}-04$	42.2092	66.2332
8000	2857.15	.0551374	$1.51186 \mathrm{E}-04$	31.3985	76.1352
7000	2439.88	.0420624	0	23.8873	87.6583
6000	2139.43	.0329598	0	18.7179	101.244
5000	1899.02	.0262206	0	14.8907	113.153
4000	1702.07	.0211214	0	11.9948	126.928
3000	1534.6	.0171599	0	9.74512	143.065
2000	1391.64	.0140576	0	7.98332	155.463
1000	1264.67	.0115682	0	6.5696	169.487
0	1148.53	$9.53506 \mathrm{E}-03$	0	5.41497	185.497

11	11.4502	13290.3	＊＊＊＊＊＊＊＊
12	12.3266	13249.7	＊＊＊＊＊＊＊＊
13	13.2115	13207.1	＊＊＊＊＊＊＊＊
14	14.1066	13162.3	＊＊＊＊＊＊＊＊
15	15.0134	13115.3	＊＊＊＊＊＊＊＊
16	15.9334	13065.8	＊＊＊＊＊＊＊＊
17	16.8678	13013.8	＊＊＊＊＊＊＊＊
18	17.8178	12959.1	＊＊＊＊＊＊＊＊
19	18.7846	12901.7	＊＊＊＊＊＊＊＊
20	19.7693	12841.3	＊＊＊＊＊＊＊＊＊
21	20.7729	12778	＊＊＊＊＊＊＊＊＊
22	21.7967	12711.4	＊＊＊＊＊＊＊＊＊
23	22.8416	12641.7	＊＊＊＊＊＊＊＊＊
24	23.9087	12568.5	＊＊＊＊＊＊＊＊＊
25	24.9991	12491.8	＊＊＊＊＊＊＊＊＊
26	26.1139	12411.5	＊＊＊＊＊＊＊＊＊
27	27.2543	12327.5	＊＊＊＊＊＊＊＊＊
28	28.4213	12239.8	＊＊＊＊＊＊＊＊＊
29	29.6162	12148.1	＊＊＊＊＊＊＊＊＊
30	30.8404	12052.5	＊＊＊＊＊＊＊＊＊＊
31	32.0949	11952.9	＊＊＊＊＊＊＊＊＊＊
32	33.3813	11849.3	＊＊＊＊＊＊＊＊＊
33	34.7007	11741.5	＊＊＊＊＊＊＊＊＊
34	36.0549	11629.6	＊＊＊大＊＊＊＊＊
35	37.4452	11513.5	＊＊＊＊＊＊＊＊＊
36	38.8732	11393.2	＊＊＊＊＊＊＊＊＊
37	40.3407	11268.5	＊＊＊＊＊＊＊＊＊
38	41.8495	11139.4	＊＊＊＊＊＊＊＊＊
39.	43.4013	11005.5	＊＊＊＊＊＊＊＊
40	44.9982	10866.5	＊＊＊＊＊＊＊＊
41	46.6422	10721.6	＊＊＊＊＊＊＊＊
42	48.3356	10571.5	＊＊＊＊＊＊＊
43	50.0805	10414.4	＊＊＊＊＊＊＊
44	51.8797	10249.3	＊＊＊＊＊＊
45	53.7356	10076．2	＊＊＊＊＊＊
46	55.6511	9893.3	＊＊＊＊＊
47	57.6291	9702.54	＊＊＊＊＊
48	59.6728	9505.04	＊＊＊＊
49	61.7856	9306.29	＊＊＊＊
50	63.9711	9118.46	＊＊＊
51	66.2332	8927.23	＊＊＊
52	68.5758	8729.88	＊＊
53	71.004	8524.63	＊＊
54	73.522	8310.94	＊
55	76.1352	8089.71	＊
56	78.8492	7861.08	＊
57	81.6698	7624.8	＊
58	84.6039	7380.54	
59	87.6583	7128.02	
60	90.8408	6866.34	

61	94.1597	6596.72
62	97.6242	6317.82
63	101.244	6029.23
64	105.031	5730.49
65	108.996	5421.24
66	113.153	5100.92
67	117.516	4769.05
68	122.102	4424.04
69	126.928	4067.66
70	132.016	3697.73
71	137.386	3313.83
72	143.065	2914.9
73	149.079	2500.2
74	155.463	2068.61
75	162.252	1619.14
76	169.487	1150.56
77	177.217	661.687
78	185.497	151
79	194.389	-383.061
80	203.999	-944.286
81	214.324	-1545.16
82	225.559	-2191.07
83	237.799	-2880.13
84	251.192	-3637.58
85	265.922	-4445.72

Cylindrical Integration Program for Cabin Geometry Factor K

This program takes the pseudolength and radius of a cylinder (in meters)that represents the cabin of an aircraft and computes the spatial integral for the center of the cabin. It includes the self attenuation of the air in the cabin. The integration intervals are automatically computed by a method found to give results within 5% of using .1 meter intervals.

10 'multiple integral algorithm 4.4
20 'Burden, Faires, Reynolds, NUMERICAL ANALYSIS, 2ed ed.
30 'To approximate $I=$ double integral $((f(x, y) d y d x))$ with limits
40 - of integration from a to b for x and from c to d for y.
50 -
60 'Input: endpoints a, b, c, d : positive integers M, n.
70 'Output: approximation J.
80 -
90 'Limits of integration

110 MUT $=6.48072 \mathrm{E}-03$: 'for cab in air at 8000 feet
120 INPUT "pseudolength,radius"; B,D
$125 \mathrm{~b}=\mathrm{b} / 2$
$130 \mathrm{~A}=0: \mathrm{C}=0$
$140 \mathrm{M}=\operatorname{INT}(2 * \mathrm{D})$
145 IF $\mathrm{M}<5$ THEN $\mathrm{M}=5$
$150 \mathrm{~N}=\operatorname{INT}(8 * B)$
155 IF $\mathrm{N}<10$ THEN $\mathrm{N}=10$
$160 \mathrm{H}=(\mathrm{B}-\mathrm{A}) /\left(2 *_{\mathrm{N}}\right)$
170 FOR I = 1 TO $2 * \mathrm{~N}+1$
$180 \mathrm{X}=\mathrm{A}+\mathrm{I} * \mathrm{H}$
$190 \mathrm{HX}=(\mathrm{D}-\mathrm{C}) /(2 * \mathrm{M})$
$200 \mathrm{Y}=\mathrm{C}: \mathrm{LL}=\mathrm{FNXY}$
$210 \mathrm{Y}=\mathrm{D}: \mathrm{UL}=\mathrm{FNXY}$
$220 \mathrm{Kl}=\mathrm{LL}+\mathrm{UL}: \mathrm{K} 2=0: \mathrm{K} 3=0$
230 FOR J = 1 TO 2*M-1
$240 \mathrm{Y}=\mathrm{C}+\mathrm{J} * \mathrm{HX}: \mathrm{Z}=\cdot \operatorname{FNXY}$
250 IF $\mathrm{J}=2 *(\mathrm{~J} \backslash 2)$
THEN K2 $=\mathrm{K} 2+\mathrm{Z}$
ELSE K3 $=$ K3 +Z
260 NEXT J
$270 \mathrm{~L}=(\mathrm{K} 1+2 * \mathrm{~K} 2+4 * \mathrm{R} 3) * \mathrm{HX} / 3$
280 IF I=0 OR $I=2 * M$
THEN $\mathrm{Jl}=\mathrm{J} 1+\mathrm{L}$
ELSE IF $I=2 *(I \backslash 2)$
THEN J2=J2+L
ELSE J3=J3+L
290 NEXT I
$300 \mathrm{~J}=(\mathrm{J} 1+2 * \mathrm{~J} 2+4 * \mathrm{~J} 3) * \mathrm{H} / 3$
310 PRINT "The Cabin Geometry Factor K is:";J
320 END

Vita

Stephen P. Conners was born 9 November 1954 to an Air Force family at Wright-Patterson AFB, Ohio. He grem up at a variety of Air Force Bases and completed high school at Rogerivilie, Pennsylvania. He entered Duquesne University in August 1972 with an AFROTC scholarship. He graduated with a B.S. in Physics in May of 1976. He was called to active duty in December 1976, assigned to Undergradate Navigator Training School at Mather AFB, California. He continned his training at the Electronic Warfare School there. After completing B-52 Combat Crew Training School at Castle AFB, California, he was assigned to the $325 t h$ Bomb Squadron at Fairchild AFB, Washington as an Electronic Marfare
 July of 1984 he completed work leading to an additional AFSC for Aircraft Maintaince Officer. Captain Conners was as igned to the Air Force Institute of Technology's master's degree program in Nuclear Effects in July of 1984.
.

